Chronic Myeloid Leukemia: Molecular Monitoring of Residual Disease by Genomic DNA Compared to Conventional mRNA Analysis in Follow-Ups to 8 Years

Ilaria Stefania Pagani, PhD1,3,4, Orietta Spinelli, PhD1,2, Adelaide Bussini, PhD3,4, Tamara Intermesoli5,4, Francesco Pasquali, MD5,6, Francesco Lo Curti, PhD1,6, Arnalda Lanfranchi, PhD3,4, Fulvio Porta, MD5,6, Alessandro Rambaldi4 and Giovanni Porta, MD5,1

1 DSBSC, University of Insubria, Varese, Italy,
2 USC Hematology, Ospedali Riuniti di Bergamo, Bergamo, Italy,
3 Hematology, Ospedali Riuniti, Bergamo, Italy,
4 Division of Hematology, Ospedale Bergamo, Bergamo, Italy,
5 Dibscc, Università dell’Insubria, Varese, Italy,
6 Dep of oncohaematology and BMT unit, Spedali Civili di Brescia, Brescia, Italy

Abstract 1687

Background: Chronic myeloid leukemia (CML) is a clonal myeloproliferative disorder resulting from the t(9;22)(q34;q11) balanced reciprocal translocation within a pluripotent stem cell (SC). The resulting Philadelphia (Ph) chromosome produces BCR-ABL1 fusion gene coding for a deregulated Abl tyrosine-kinase with constitutive and tumorigenic activity. The first line therapy of CML is imatinib mesylate, which targets Bcr-Abl protein, inhibiting proliferation pathways. Complete cytogenetic response can be achieved in 95% of patients treated in the early chronic phase (CP)1. Molecular monitoring of minimal residual disease is crucial to detect poor responses to imatinib and optimizing treatment with second generation tyrosine-kinase inhibitors or allogeneic stem cell transplantation. Residual leukemia is assessed by a quantitative manner evaluating levels of BCR-ABL1 transcripts by real-time reverse transcriptase PCR (qRT-PCR). Although qRT-PCR detects mRNA levels in a very sensitive manner, the negative result is difficult to interpret, because undetectable levels of chimeric transcript can reflect either an effective elimination of leukemia cells, or the presence of a quiescent leukemia SC transcriptionally silent.

Methods: We developed a novel highly sensitive method to identify quiescent leukemic cells through quantitative real-time PCR (Q-PCR) targeting the genomic breakpoint sequence1. In CML each patient shows a unique genomic fusion sequence1, that need to be characterized in order to design a specific genomic assay. We selected 14 patients with CML diagnosed in the early CP. We identified junctions sequences by long-range PCR2. We carried out Q-PCR assay using common primer forward and probe in BCR, and 2 different primers reverse, in ABL or BCR, used as control1. The percentage of leukemic cells (LCs) was calculated using the derivation of the ΔCt formula4: \[\text{LC} = \frac{100 \times (2^{\Delta \text{Ct}+1})}{n} \], where ΔCt is the difference between amplification cycles of BCR-ABL1 and BCR reactions, and n is the number of experimental replicates. We tested the sensitivity and the efficiency of the method on K562 cell line. According to the human C value, K562 were diluted in normal commercial genomic DNA until \(10^{-4} \) dilutions. Eight CML patients in early CP were the object of this study. A patient specific Q-PCR assay was performed on DNA obtained at diagnosis and subsequently applied to monitor minimal residual disease during imatinib treatment for up to 8 years, for a total of 61 samples. In parallel the same peripheral blood samples were tested by standard qRT-PCR, and the percentage of residual disease (international scale) measured by mRNA was compared with DNA analysis.

Results: Positive levels of mRNA were obtained in 79% of samples analyzed by qRT-PCR, while we detected Ph-positive cells in 92% of samples. In all positive samples for chimeric transcript we measured positive levels of corresponding genomic DNA, confirming the sensitivity of the Q-PCR method. In 13% of samples, with undetectable levels of mRNA, we observed the persistence of quiescent leukemic cells, transcriptionally silent like shown by patient 2 in figure 1. This could probably indicate the presence of pluripotent LSCs or progenitor cells, that does not respond to imatinib treatment. Finally undetectable levels of mRNA were confirmed by a correspondent DNA negativity in 8,2% of the samples. This datum should be investigated further in order to establish if the disease was been eradicated. Patients negative by mRNA detection in several consecutive follow-ups could be candidates to stop imatinib therapy. The development of
a DNA base technique could be a powerful tool to evaluate the effective presence/absence of leukemic cells. Patient 8 resulted negative at 70 months monitored by RNA and DNA technique could be a candidate to stop the therapy (figure 2).

Conclusion: Although the initial characterization of genomic breakpoint sequence is still time consuming, it may provide a patient-specific DNA biomarker that can be used to detect the presence of quiescent leukemic cells otherwise undetectable using a conventional qRT-PCR. The DNA genomic Q-PCR could be a very sensitive and direct technique to detect minimal residual disease in CML patients treated with tyrosine-kinase inhibitors and allogeneic transplantation.

We thank AIL Varese and Bergamo.

Disclosures: No relevant conflicts of interest to declare.

Footnotes
* Asterisk with author names denotes non-ASH members.