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Introduction

Prediction and control of traffic have become important aspects of the modern world.
In fact, the necessity of forecasting the depletion time of a queue or optimizing traffic
flows, thereby reducing congestion and the number of accidents, has arisen following the
increase of circulating vehicles. In traffic flow theory a basic tool to analyze vehicular
traffic problems is given by the so-called fundamental relations among the macroscopic
quantities of the flow, as the density (number of vehicles per kilometer), the mean speed of
the flow (kilometer per unit time) and the flux (number of vehicles per unit time). Mainly
two fundamental relations are used: the flux-density diagram (or fundamental diagram)
and the speed-density diagram. They allow one to study the macroscopic trends of vehicle
dynamics as a result of the interactions taking place at the microscopic scale. Therefore,
macroscopic relations can be used for instance to predict the maximum capacity of a road
when certain traffic rules are imposed, such as, e.g., number of lanes, safety distance, inflow
block of heavy vehicles or speed limits.

The qualitative structure of such diagrams is defined by the characteristics of different
regimes, or phases, of traffic as discussed in detail in Section 2.2 and as widely studied,
e.g., in [1, 46, 55]. In particular, the experimental diagrams usually show the presence of
two regimes of traffic. The free-flow phase occurs at low densities and is characterized by
a nearly linear increase of the flux with respect to the density of vehicles. In the congested
phase, in which the road becomes progressively jammed, we observe the decrease of the
speed of the flow due to the high congestion. As a consequence, in this regime, also the flux
decreases as the density of the vehicles increases because of the drastic reduction of the
mean speed. The transition between the two phases is characterized by the capacity drop,
i.e. the sharp decrease of the average quantities across a density value called critical density.
Moreover, since the macroscopic dynamics depends on different properties of the flow, such
as the types of vehicles traveling on the road or the external conditions (e.g. weather or
environmental conditions), experimental diagrams show a multivalued structure: several
values of the flux of vehicles or of the mean speed may correspond to a given value of the
vehicle density, see for instance Figure 2.1 in Chapter 2, with experimental data published
in [70, 79]. The dispersion of the data is small in the free-flow phase, while is more evident
in the congested regime.

Mathematical models for traffic flow capable of providing diagrams of traffic which
reproduce the structure of experimental data play thus an important role. In this work, we
focus on kinetic theory of vehicular traffic. Kinetic models are characterized by a statistical
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Figure 1: Diagram reproducing the conceptual structure of this thesis.

description of the microscopic states of vehicles (space positions and microscopic speeds),
whose evolution is described by means of a statistical distribution function. The peculiarity
of these models is to provide, thanks to a detailed characterization of the microscopic
interactions among vehicles, information on the macroscopic trend of the flow, without
assuming previous knowledge on the dependence of the flux and of the mean velocity on
the local density of traffic, as it is done in standard macroscopic models based on fluid
dynamics equations [5, 59, 77, 87].

The main goal of this thesis is the study of (Boltzmann-type and Fokker-Planck-type)
kinetic models for traffic flow having properties which improve the already existing models
in the mathematical literature, following the scheme of the diagram in Figure 1. In partic-
ular, we wish to propose kinetic models being amenable for computations and analytical
investigations, but at the same time being able to characterize and to explain the features
of experimental diagrams.

To this end, first we will aim at deriving models that reproduce and explain the charac-
teristics of experimental diagrams of traffic, such as the multiphase structure, the capacity
drop and the scattering of the measured data. See arrows 1a and 1b in Figure 1. In
particular, we will try to reproduce the multivaluedness of diagrams by introducing a

2
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multi-population kinetic model. In this way, we will propose a new interpretation of the
dispersion of experimental data since it can be attributed to the heterogeneous composition
of the flow along a road. In fact, the scattering is naturally obtained by treating traffic
as a mixture of vehicles with different physical and kinematic characteristics (e.g. typical
length, maximum speed, et cetera). Thus, the multi-population model will allow us to ex-
plain the possible microscopic causes which induce the dispersion of data. The multivalued
nature of real diagrams is an aspect widely studied in the literature: for instance, it can be
explained as a result of the variability of the microscopic speeds at equilibrium in a kinetic
model, see [26], or as a consequence of the presence of nonlinear traveling wave solutions
(called jamitons) in second order macroscopic models, see [79].

We recall that experimental diagrams are built assuming that traffic is uniform in
space. From a mathematical point of view, this means that theoretical diagrams have to
be recovered by linking the macroscopic variables at equilibrium. Since, in the kinetic
approach, density, flux and mean speed are computed as moments of the kinetic distri-
bution, the knowledge of the steady state is crucial in order to reproduce fundamental
diagrams. Noticing that, usually, the complexity of the collision operator of a Boltzmann-
type equation makes the computation of the steady state very demanding, here we aim
at introducing kinetic models for which the analytical expression of the steady state can
be computed explicitly (arrows 2 in Figure 1). We will see that this is possible thanks to
the particular choice of the microscopic interactions which makes the continuous-velocity
model consistent with a lattice-velocity model at equilibrium. Further, we will show that
this simple and prototype steady state (because quantized on a reduced number of speeds)
actually is sufficient to catch the macroscopic properties of the flow at equilibrium, as the
phase transition, the capacity drop and the scattering of data.

We also wish to propose models being endowed with a robust mathematical structure.
Thus, we will study the mathematical properties which induce the structure of diagrams,
the well posedness with the existence and uniqueness proof of the solution of the kinetic
spatially homogeneous equation. See arrows 2 in Figure 1.

Since the macroscopic trend of traffic and the corresponding fundamental diagrams
depend on the behaviors of drivers at the microscopic level, a further goal of this thesis
will be the analysis of the effects of the microscopic interaction rules on the macroscopic
dynamics (arrow 3 in Figure 1). The kinetic framework seems to be the natural approach
to investigate this purely multiscale issue which is tackled by an asymptotic study of the
model in the Fokker-Planck kinetic limit (grazing collision limit). This approach will lead
to the general expression of the equilibrium kinetic distribution, as function of microscopic
parameters. Therefore, we will able to characterize the diagrams of traffic according to the
microscopic hypotheses and to explain the realistic interaction rules taking place among
vehicles.

We notice that kinetic models satisfying the above properties pave the way to formulate
new macroscopic equations in which the closures are not derived from heuristic considera-
tions or by fitting data, but using the equilibrium distributions of the kinetic model. See
arrow 4 in Figure 1. These macroscopic equations, which simulate the traffic phenomena at
equilibrium, may be also obtained as hydrodynamic limits of the spatially inhomogeneous
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version of the kinetic model. These aspects will be discussed in the final chapter.

The thesis will be organized as follows and each chapter will be introduced by a short
motivational section.

Chapter 1. We begin with a short introduction on mathematical models for traffic flow
at each scale. In particular, we deal with the kinetic approach to traffic flow and we
review several models introduced in the literature;

Chapter 2. We summarize the results published in the paper [76] in which, resting on
the methods of kinetic theory, we introduce a new traffic model which takes into
account the heterogeneous nature of the flow of vehicles along a road. In more detail,
the model considers traffic as a mixture of two populations of vehicles (e.g., cars
and trucks) with different microscopic characteristics, in particular different lengths
and/or maximum speeds. With this approach we gain insight into the scattering of
the data in the regime of congested traffic clearly shown by experimental measure-
ments;

Chapter 3. We summarize the results proposed in the paper [75] in which the purpose is
to study the properties of kinetic models for traffic flow described by a Boltzmann-
type approach and based on a continuous space of microscopic velocities. In our
models, the particular structure of the collision kernel allows one to find the analytical
expression of a class of steady-state distributions, which are characterized by being
supported on a quantized space of microscopic speeds. The number of these velocities
is determined by a physical parameter describing the typical acceleration of a vehicle
and the uniqueness of this class of solutions is supported by numerical investigations.
This shows that it is possible to have the full richness of a kinetic approach with
the simplicity of a space of microscopic velocities characterized by a small number of
modes;

Chapter 4. We summarize, with a few minor changes, the results published in the pa-
per [74]. In fact, in contrast to [74], here we modify the interaction rules in order to
extend the continuous-velocity kinetic traffic model studied in [75] and in Chapter 3
to the case of more than one class of vehicles, each of which is characterized by few
different microscopic features. We again consider a Boltzmann-type framework with
binary interactions (as in the previous chapters), which take place among vehicles
belonging to the various classes. This approach differs from the multi-population
kinetic model proposed in [76] and in Chapter 2 because here we assume continuous
velocity spaces and as in [75] the model is characterized by the presence of a finite
parameter describing the physical velocity jump performed by a vehicle that increases
its speed after an interaction. The model is discretized in order to investigate numeri-
cally the structure of the resulting fundamental diagrams and the system of equations
is analyzed by studying well posedness. Moreover, we compute the equilibria of the
discretized model and we show that the exact asymptotic kinetic distributions can
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be obtained with a small number of velocities in the grid. Finally, we introduce a
new probability law in order to attenuate the sharp capacity drop occurring in the
diagrams of traffic;

Chapter 5. We summarize the results proposed in the paper [85] in which, starting from
mean-field interaction rules based on two levels of stochasticity in drivers’ subjective
decisions, we study the influence of the microscopic dynamics on the macroscopic
properties of vehicular flow. In particular, we study the qualitative structure of the
resulting flux-density and speed-density diagrams for different choices of the desired
speeds. We are able to recover multivalued diagrams as a result of the existence of
a one-parameter family of stationary distributions, whose expression is analytically
found by means of a Fokker-Planck approximation (grazing collision limit) of the
initial Boltzmann-type model;

Chapter 6. We finally end with a conclusive chapter in which we summarize the mathe-
matical and the modeling aspects discussed in this thesis. In particular, we focus on
the improvements that, in our opinion, the thesis would introduce in the literature of
traffic theory and on open perspectives in this research field. A further section will
be devoted to a brief study of a single-population macroscopic model endowed with
the closure law provided by the kinetic model proposed in Chapter 3.

5



Chapter 1

Background material on
mathematical models for traffic flow

The aim of this introductory chapter is to briefly review several mathematical models
already present in the literature and regarding vehicular traffic. In the current mathemat-
ical literature, there are three different approaches to model traffic flow phenomena, which
differ from each other in the scale of representation.

1.1 Microscopic scale
Microscopic models look at vehicles as single entities of traffic and predict, using a sys-

tem of ordinary differential equations, the evolution of their positions and speeds (namely,
the microscopic states characterizing their dynamics) regarded as time dependent variables.
See, e.g., [11, 47, 71].

In these models, vehicles are assimilated to point masses and no overtaking is allowed.
The acceleration is prescribed for each entity as a function of time, position, and speed
of the various particles of the system, also taking into account mutual interactions among
vehicles. For example, the general form of a microscopic model can be expressed as

d2

dt2 x(t) = a
(
t,x(t), d

dtx(t)
)
,

where t is time, x(t) ∈ RN and d
dtx(t) ∈ RN are vectors of N components whose generic

element xi(t) ≥ 0 and d
dtxi(t) ≥ 0 is the position and the speed of the i-th vehicle along

the road, N ∈ N is the total number of vehicles and finally a : R×RN ×RN → RN is the
vector-valued function such that ai describes the acceleration of the i-th vehicle. Clearly,
the above system of differential equations requires the knowledge of the initial conditions
xi(0) and d

dtxi(0), ∀ i = 1, . . . , N . Moreover, in microscopic models one usually assumes
that xi−1(t) < xi(t) < xi+1(t), ∀ i = 2, . . . , N − 1 and ∀ t ≥ 0.

As a matter of fact, in the well known follow-the-leader theory each vehicle is assumed
to adapt its speed to that of the leading vehicle based on their instantaneous relative speed
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1. Background material on mathematical models for traffic flow

and mutual distance, see e.g. [4, 30, 71], namely a depends at most on xi, xi+1 and on
d
dtxi(t),

d
dtxi+1(t). Thus, we can write

d2

dt2xi(t) = ai

(
t, xi(t),

d
dtxi(t), δxi(t), δvi(t)

)
, i = 1, . . . , N (1.1)

where δxi(t) = xi+1(t)−xi(t) and δvi(t) = d
dtxi+1(t)− d

dtxi(t) are, respectively, the relative
position and the relative speed of the i-th and (i+ 1)-th vehicle at time t.

Follow-the-leader models differ in the modeling of the interaction part of the acceler-
ation function a, namely the part which takes into account the relative quantities δxi(t)
and δvi(t).We describe two class of follow-the-leader models:

• models in which the interaction part depends on the relative position and speed, see,
e.g., [30]. In this case the function ai in (1.1) writes as

ai = δvi(t)
δxi(t)1+γ︸ ︷︷ ︸

interaction term

+
vd − d

dtxi(t)
τ︸ ︷︷ ︸

relaxation term

, γ ≥ 0, τ > 0.

Notice that, thanks to the denominator in the interaction term, the acceleration
results to be inversely proportional to the distance between the interacting vehicles.
Further, the numerator in the interaction term makes the acceleration positive if the
leading car is faster, while negative otherwise. The relaxation term, instead, models
the tendency of a driver to travel to a fixed desired speed vd > 0 when no interactions
take place. The parameter τ is the response time of a driver;

• models in which the interaction part depends only on the relative position, see,
e.g., [6]. In this case the function ai in (1.1) writes as

ai = 1
τ

 V (δxi(t))︸ ︷︷ ︸
interaction term

− d
dtxi(t)︸ ︷︷ ︸

relaxation term

 , τ > 0,

where V : R+ → [0, Vmax] is a sort of desired speed, with Vmax maximum allowed
speed. Clearly, V should be an increasing function of the distance δxi(t) of the two
vehicles at time t. In [6] a possible choice of V is proposed.

In the context of the car-following theory we recall also the model introduced by Zhang
and Kim [88] since the authors are able to reproduce both the so-called capacity drop and
traffic hysteresis, two basic features characterizing the multiphase structure of fundamental
traffic diagrams. The result is reached by means of an acceleration function a which, in
contrast to classical follow-the-leader models, includes a non-constant driver response time
τ , that can be also a function of the traffic regime. Thus, τ can be modeled differently
according to the phase of traffic.
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1. Background material on mathematical models for traffic flow

Although this class of models allows the description of the trajectory of each vehicle,
the crucial problem of the microscopic scale is the large number of equations required for
the modeling of traffic dynamics. Thus, the larger the number of vehicles, the more com-
putationally expensive the model. Moreover, microscopic models do not provide a robust
criterion to prescribe vd or V (δxi(t)), which are therefore given by heuristic considerations.
Finally, we notice that these models are scarcely predictive because are too much detailed.
In other words, there are many way to recover information on the overall trend of traffic.

For further discussions on microscopic models, we refer to the review [70] and references
therein.

1.2 Macroscopic scale
Macroscopic models provide a large scale aggregate point of view, neglecting the mi-

croscopic dynamics. Thus, the focus is not on each single particle of the system. In fact,
macroscopic models study only the evolution of the macroscopic quantities related to traf-
fic flow by means of partial differential equations inspired by conservation and balance
laws from fluid dynamics, following the seminal works of Lighthill and Whitham [59] and
Richards [77].

First order macroscopic models describe the evolution (in space and time) of the density
of vehicles on a road using a scalar conservation law of the form

∂tρ(t, x) + ∂x(ρ(t, x)u(ρ(t, x))) = 0, (1.2)

where, at time t ≥ 0 and at position x, ρ(t, x) ≥ 0 is the macroscopic density (expressed for
instance as number of vehicles per kilometer), while u(ρ(t, x)) ≥ 0 is the mean speed of vehi-
cles (expressed as kilometer per unit time) and thus the product ρ(t, x)u(ρ(t, x)) ≥ 0 is the
flux function (expressed as number of vehicles per unit time). Observe that equation (1.2)
requires that, in order to be closed, u be a given function of the density ρ.

Let
Nv(t) =

∫ b

a
ρ(t, x)dx

be the number of vehicles in a stretch [a, b] ⊆ R+ of a road at time t ≥ 0. Then, the
continuity equation (1.2) is obtained by imposing that the time variation of the number
of vehicles Nv(t) in the stretch [a, b] is only due to the balance of vehicles which cross the
positions x = a and x = b:

d
dt

∫ b

a
ρ(t, x)dx = (ρu)(t, a)− (ρu)(t, b).

In fact, from the above expression, since (ρu)(t, a) − (ρu)(t, b) = −
∫ b
a ∂x(ρu)(t, x)dx and

thanks to the arbitrariness of [a, b], we finally get equation (1.2).
Improvements and further evolution of such a basic macroscopic description of traffic

have been proposed over the years by several authors, as the classical mechanically consis-
tent restatement of second order models proposed by Aw and Rascle [5] and Zhang [87].
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1. Background material on mathematical models for traffic flow

In second order models the equation (1.2) is coupled with an additional equation for the
evolution of the macroscopic speed u. The Aw-Rascle and Zhang model in conservation
form writes as ∂tρ(t, x) + ∂x(ρu)(t, x) = 0

∂t(ρ(u+ p)) + ∂x(ρu(u+ p)) = 0
(1.3)

where p = p(ρ) is the so-called traffic pressure and is a known function of the density ρ.
Observe that, in contrast to first order models, here u is not an already given function
of the density. Equation (1.3) overcomes the two drawbacks of the prototype second
order model introduced by Payne [69] and Whitham [86]. In fact, as pointed out by
Daganzo [19] the Payne-Whitham model leads to the following two non-physical effects:
the presence of negative velocities (which is realistic in gas dynamics, not in traffic flow)
and of characteristic speeds traveling faster than the velocity of vehicles. Second order
macroscopic models for traffic flow of the type (1.3) are also studied to reproduce the
scattering of data in traffic diagrams. In fact, in [79], Seibold et al. link such multivalued
diagrams to the presence of nonlinear traveling wave solutions (jamitons) in second order
models showing that the scattering is due to jamiton-dominated solutions. In fact, since
a jamiton solution is non-constant in the density ρ and in the speed u, it would identify
more than a single point in the diagrams of traffic.

Generalizations of the model [5, 87] have been proposed in the literature, see e.g. the
Generalized Aw-Rascle-Zhang (GARZ) model studied in [23, 24] or the Generalized Second
Order Model (GSOM) introduced in [54]. In these works, a relaxation term in the equation
for the macroscopic speed is taken into account for different purposes. In particular, in
the thesis [23] and in the paper [24], Seibold et al. present an approach to determine the
parameters of the GARZ model using a fit of experimental data.

Although, in contrast to microscopic models, macroscopic ones are computationally
very fast, it is necessary to complete the equations with a closure law. This relation
defines a dependence between the macroscopic quantities. The closure law must provide
the speed u as a function of the density ρ in first order models, or the pressure p as a
function of the density ρ (and additionally of the speed u) in second order models. For
example, in (1.2) one assumes that the macroscopic speed u is actually a given decreasing
function of the local density ρ, i.e. u = u(ρ), and several laws have been considered in the
literature:

• the Greenshields’ closure [32]: starting from the empirical fact that the fluid travels
at the maximum speed u = Vmax when the road is empty (ρ = 0) and at the minimum
u = 0 when the road is congested (ρ = ρmax, i.e. in bumper-to-bumper condition),
one assumes a linear speed-density relation interpolating the previous data. Thus,
we have u(ρ) = Vmax(1 − ρ) and ρu(ρ) = Vmaxρ(1 − ρ) is the fundamental diagram.
See Figure 1.1a;

• Greenberg’s closure [31]: the speed-density diagram is prescribed by the following
logarithmic law u(ρ) = λ ln(ρmax

ρ
), λ > 0, and thus the fundamental diagram is given
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Figure 1.1: Classical closures for first order macroscopic models.
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by ρu(ρ) = λρ ln(ρmax
ρ

). See Figure 1.1b obtained with λ = 1. Observe that the free-

flow velocity is not bounded, in fact u ρ→0+
−−−→ ∞. Consequently, this closure appears

reasonable only for large values of the density;

• Underwood’s closure [83]: this model is proposed as a result of traffic studies on Mer-
rit Parkway in Connecticut (USA). It tries to overcome the limitation of Greenberg’s
model, in which the speed is unbounded in free-flow conditions, using the exponen-
tial law u(ρ) = Vmax exp(−ρ/ρc), with ρc ∈ [0, ρmax], which defines the fundamental
diagram ρu(ρ) = Vmaxρ exp(−ρ/ρc). See Figure 1.1c.

We notice that the closures provided in Figure 1.1 do not reproduce neither the phase
transition or the capacity drop. For further closure laws we refer, e.g., to the book [78].

In second order macroscopic models, see (1.3), instead, the closure is given between the
density ρ and the pressure p. In [5], the authors assume that p(ρ) = ργ, γ > 0, namely a
smooth increasing function of the density. In [87] the author takes p(ρ) = Vmax − vd(ρ),
where vd > 0 is a desired speed depending on the congestion of the road and such that
vd(0) = Vmax, so that p(0) = 0, consistently with [5].

The fact that macroscopic models require to close the equations means that the funda-
mental diagram of traffic is given as an a priori relation derived from heuristic or physical
arguments, which therefore usually do not result from microscopic dynamics. We cannot
thus expect that these models are able to provide neither realistic simulations of traffic
dynamics nor the possibility of explaining the influence of the microscopic behaviors on
the macroscopic effects. See however [4] in which the derivation of macroscopic models
from microscopic follow-the-leader ones is proposed.

The closure laws just described above are single-regime closures because they are based
on the assumption that the same relation is used for each regime of traffic. However, drivers’
behaviors are naturally different at different regimes. This fact is indeed observed also in
the experimental diagrams. Based on this concept, a variety of more refined macroscopic
models (multiphase models) which provide flux-density relations by prescribing different
flow conditions at certain stages, building the multiphase structure within the flow, are
proposed, e.g., in [15, 53, 61]. The most simple multiphase model is a two-regime model
which separates the closure used in the free and in the congested traffic. See, e.g., the
bilinear law proposed by Daganzo in [18] which results in a flux-density diagram having
a triangular shape, see Figure 1.1d. Although the closure in Figure 1.1d reproduces the
phase transition, we stress the fact that the properties of fundamental diagrams are built-
in artificially in the model. For a review of multiphase models at each scale see [10] and
references therein.

Macroscopic models are also applied to road networks. In this context, see, e.g.,
the book of Garavello and Piccoli [29]. Finally, a generalization of the Lighthill and
Whitham [59] and Richards [77] traffic flow model to the case of multiple populations
of vehicles was proposed by Benzoni-Gavage and Colombo [7]. The aim was to describe
the natural heterogeneity of traffic by considering distinct drivers’ behaviors or types of
vehicles. This model will be discussed in Section 2.4.
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1.3 Mesoscopic scale
In the middle between microscopic and macroscopic scales, we have the mesoscopic (or

kinetic) scale. This class of models is based on a statistical mechanics approach, which
still provides an aggregate representation of traffic flow while linking collective dynamics
to pairwise interactions among vehicles at a smaller microscopic scale. These models will
be the main reference background of the present thesis.

Kinetic models are characterized by a statistical description of the microscopic states
of vehicles. Therefore the evolution of their position x and speed v is described by means
of a distribution function

f = f(t, x, v) : R+ × R× V → R+ (1.4)

where V is the continuous and bounded velocity space. The kinetic distribution (1.4) is
such that f(t, x, v) dx dv is the number of vehicles which at time t are located between x
and x+ dx with a speed between v and v + dv.

Compared to microscopic models, the kinetic approach requires a smaller number of
equations and parameters. On the other hand, unlike macroscopic models, at the meso-
scopic scale the evolution equations do not require an a priori knowledge of the dependence
of the mean velocity on the local density. In fact, the macroscopic quantities are provided
by the statistical moments of the kinetic distribution function over the microscopic states:

ρ(t, x) =
∫
V
f(t, x, v)dv, (ρu)(t, x) =

∫
V
vf(t, x, v)dv, u(t, x) = 1

ρ(t, x)

∫
V
vf(t, x, v)dv.

In particular, the flux (ρu) and the average velocity u are obtained from the first momentum
of f with respect to v. Consequently, speed-density and flux-density diagrams are recovered
by means of the asymptotic (in time) kinetic distribution which provides the macroscopic
variables at equilibrium. Therefore, kinetic models are a quite natural way to bridge
microscopic causes and macroscopic effects.

The first kinetic models for vehicular traffic, introduced by Prigogine and cowork-
ers [72, 73] and later by Paveri-Fontana in [68], were based on the Boltzmann equation
that describes the statistical behavior of a system of particles in a gas. From the kinetic
point of view, the system is seen as the resultant of the evolution of microscopic particles,
with given microscopic positions and speeds, but its representation is provided in aggre-
gate terms by the statistical distribution function (1.4), whose evolution is described by
integro-differential equations. Noticing that, in traffic flow, and in contrast to gas the-
ory, the space x and the velocity v are one-dimensional microscopic states, in traffic flow
the Boltzmann-type equation, describing the evolution of the kinetic distribution (1.4),
simplifies as

∂tf(t, x, v) + v∂xf(t, x, v) = Q[f, f ](t, x, v). (1.5)
The term Q[f, f ](t, x, v) is the so-called collision operator, which, in the classical assump-
tion of binary interactions, depends quadratically on the kinetic distribution f and explic-
itly on the velocity v, but on t and x only via f(t, x, v).
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Thus, in Boltzmann-type kinetic models for traffic flow we still have a collision term
which involves integrals and describes the relaxation in time of the kinetic distribution
due to interactions among vehicles. Nevertheless, in traffic flow models, the classical cross
section of the Boltzmann equation, giving the probability of an interaction between two
gas particles, is replaced with a probability distribution depending on the local traffic
conditions and which models the speed transitions. This framework permits to take the
stochasticity of the drivers’ behavior into account, thanks to the probability distribution
which assigns a weight to the possible driver’s decisions, while maintaining the general
kinetic setting, based on the deterministic evolution of the distribution function.

However, the interaction integrals, appearing in kinetic Boltzmann-type models for
traffic flow based on a continuous-velocity space, typically do not provide the analytical
expression of the equilibrium distribution and they are very demanding from a computa-
tional point of view, see e.g. [48]. For this reason, two main approaches have been taken
into account in order to compute the time-asymptotic distribution or to reduce the com-
putational cost: on the one hand, one may consider Vlasov-Fokker-Planck type models
in which the interaction integrals are replaced by differential operators, obtained also by
means of suitable time scalings, see [36, 41, 44]; on the other hand, one may consider
simplified kinetic models with a small number of velocities, namely the discrete-velocity
models, see [16, 20, 25, 26, 42, 82].

Recently, kinetic models have been widely used, e.g. to model multilane traffic flow [9,
35, 50, 51, 60], flows on networks [27], control problems [39], homogeneous space prob-
lems [40], inhomogeneous space phenomena with non-local interactions [49], heterogeneous
compositions of the flow [60, 74, 76] and safety aspects in vehicular traffic [28]. Also, kinetic
models have been proposed to derive macroscopic equations, see [36, 37, 38].

For an overview of vehicular traffic models at the kinetic scale, the interested reader is
referred e.g., to the review papers [52, 70] and references therein.

In the following we will review some kinetic models for vehicular traffic available in the
mathematical literature.

1.3.1 Boltzmann-type models: first approaches
Prigogine’s model

In this section we present the first version of the kinetic theory for modeling traffic
phenomena, which was introduced by Prigogine and coworkers [72, 73] by modifying the
kinetic theory of gases.

The core of a kinetic model is the modeling of microscopic interactions in order to
specialize the expression of the collision operator Q[f, f ](t, x, v) appearing in the general
form of the kinetic equation (1.5). Prigogine assumed that Q[f, f ](t, x, v) is split in two
additional terms:

• Qint[f, f ](t, x, v) which describes the speed transitions due to the microscopic slowing
down interactions among vehicles. Under the hypothesis of vehicular chaos (similar
to the molecular chaos in gas kinetic theory, see however [62] or [49]), which states

13



1. Background material on mathematical models for traffic flow

that vehicles are actually uncorrelated before interacting due to the mixing caused
by overtaking, the interaction term proposed by Prigogine is

Qint[f, f ](t, x, v) = (1− P )f(t, x, v)
∫
V
(v∗ − v)f(t, x, v∗)dv∗.

We notice that the collision term is indeed quadratic with respect to f . For v∗ > v,
the interaction term Qint is positive and models the case in which a vehicle with
velocity v∗ brakes to the velocity v of the leading vehicle. Conversely, for v∗ < v,
the interaction term Qint is negative and thus models the loss of the velocity v of
a vehicle interacting with its leading car having velocity v∗. The quantity P is the
so-called probability of acceleration and it was assumed to depend on the density ρ
in a linear way:

P (ρ) = 1− ρ

ρmax
.

In the above formula ρmax denotes the maximum density according to the road ca-
pacity. Thus, slowing down takes place with probability 1 − P which increases as
the road becomes congested, i.e. when ρ → ρmax. For further discussions on the
probability P see Section 2.3.2, or Section 4.4 for more complex choices;

• Qrel[f, f ](t, x, v) which describes the collective relaxation of the kinetic distribution
f towards a desired distribution f0(t, x, v), which is a mathematical idealization of
the drivers’ will to adjust the speed with respect to a target. The relaxation term
proposed by Prigogine is

Qrel[f, f ](t, x, v) = −f(t, x, v)− f0(t, x, v)
T

,

where T is the relaxation time which was also assumed to depend on the density:

T = ρ

ρmax − ρ
,

while f0(t, x, v) was taken as

f0(t, x, v) = ρ(t, x)F0(v),

being F0(v) a given function of the velocity not depending on the time and space
variables. Recently, in [43] a novel distribution of desired velocities that is more
suitable for describing real traffic conditions was analyzed.

Thus, in Prigogine’s model two type of interactions are taken into account, which result
in accelerating and braking. The first one is modeled by the relaxation term, the second
one by the interaction part.

However, the choice of treating the acceleration by means of a collective relaxation of f
towards f0 has come under severe criticism. In fact, Paveri-Fontana [68] showed that this
scenario results in physically unsatisfactory phenomena, discussed in the next paragraph.
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Paveri-Fontana’s model

According to Paveri-Fontana [68], the model by Prigogine is affected by a conceptual
drawback consisting in the assumption of a collective relaxation of the distribution of
the microscopic velocities. Paveri-Fontana argued that each single vehicle, in contrast to
the molecules in a gas, has a desired velocity towards which it aims in the absence of
interactions with other vehicles.

From a mathematical point of view, in [68] an additional microscopic state was con-
sidered: the desired velocity vd, belonging to the same space V of the actual speeds.
Therefore, a generalized distribution function g = g(t, x, v, vd) is introduced such that
g = g(t, x, v, vd)dxdvdvd denotes the number of vehicles at time t, traveling in the stretch
[x, x+ dx] of the road with actual velocity between [v, v+ dv] and desired velocity between
[vd, vd + dvd]. Observe that the classical kinetic distribution function (1.4) and the desired
distribution f0 are recovered as moments of g with respect to vd and v, respectively:

f(t, x, v) =
∫
V
g(t, x, v, vd)dvd, f0(t, x, v) =

∫
V
g(t, x, v, vd)dv,

while the macroscopic quantities at time t at position x are

ρ(t, x) =
∫
V

dv
∫
V
g(t, x, v, vd)dvd, (ρu)(t, x) =

∫
V
vdv

∫
V
g(t, x, v, vd)dvd,

u(t, x) = 1
ρ(t, x)

∫
V
vdv

∫
V
g(t, x, v, vd)dvd.

The kinetic equation (1.5) is then used for evolving the generalized distribution g as
follows:

∂tg(t, x, v, vd) + v∂xg(t, x, v, vd) = Q[g, g](t, x, v, vd). (1.6)
Again, in [68] the collision term depends quadratically on g (possibly, also via f) and
Q[g, g](t, v) is split in two additional terms, a relaxation one having the form

Qrel[g](t, v) = − ∂

∂v

(
vd − v
T

g
)
,

and an interaction one inspired by the modeling of Prigogine [72]. In fact, the interaction
term is built in such a way that, integrating (1.6) over the microscopic states vd, the
resulting evolution equation for the kinetic distribution f differs from Prigogine’s model
only in the relaxation term. Thus, also in this case, only braking are admissible when
two vehicles interact, instead only later, models with a kinetic description also for the
acceleration were developed [62]. However, a different probability of acceleration is taken
into account by Paveri-Fontana:

P (ρ) =
(

1− ρ

ρmax

)
H

(
1− ρ

ρc

)

where H(·) denotes the Heaviside step function and ρc ∈ (0, ρmax) is a critical density value
above which acceleration is prohibited.
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Finally, we observe that integrating (1.6) with respect to the microscopic state v we get
an evolution equation for the desired distribution function f0 which indeed confirms that
f0 depends now on the overall evolution of the system.

1.3.2 Enskog-like models
We notice that the classical kinetic equation of traffic (1.5) is characterized by localized

interactions since the collision operator depends on the product of the kinetic distribution
f evaluated at the same space position x. This introduces a serious shortcoming which
produces non-physical phenomena, mathematically due to the positivity of the velocity v,
because it prevents backward propagation of the perturbations in the negative x direction.

The above consideration can be analyzed by integrating (1.5) along the characteristic
lines

dx
dt = v ⇐⇒ x− vt = constant

and we get

f(t, x, v) = f(0, x− vt, v) +
∫ t

0
Q[f, f ](s, x+ v(s− t), v)ds. (1.7)

Observe that since v ≥ 0 and s ≤ t, then x− vt ≤ x and x+ v(s− t) ≤ x. It is then clear
that the kinetic distribution f(t, x, v) depends, at position x and at time t, only on its value
at positions x′ < x. From the point of view of traffic, this means that perturbations of the
flow in a point x′ cannot propagates backward, on the contrary they follow the stream of
traffic influencing the flow in points x > x′. This fact is certainly in contrast to realistic
observations in congested traffic flow situations. However, we remark that the previous
analysis does not apply to gas kinetic theory, since the velocity of gas particles can assume
positive and negative values.

This aspect was not studied in the pioneering works of Prigogine [72, 73] and Paveri-
Fontana [68] since they were aimed mainly to model the collision operatorQ and to simulate
spatially homogeneous problems, as stationary steady states or fundamental diagrams.
However, if the kinetic equation (1.5) is used for the modeling of spatially inhomogeneous
situations, the study of the propagation of the waves due to the convective term becomes
crucial. In this context we refer to a series of papers by Klar and Wegener [49, 50, 51] or
the review [52], which suggested a way, inspired by the Enskog theory of a dense gas [14],
to overcome the aforementioned drawback.

In the simplest situation, the idea proposed in [49] is based on the following microscopic
assumptions:

• the binary interactions involve a vehicle 1 at place x1 with velocity v1 and its leading
vehicle 2 at x2 > x1 with velocity v2. Vehicle 1 is assumed to change its velocity only
in response to the leading vehicle;

• if the vehicle 1 is faster than the leading one and the distance h = x2 − x1 between
them is smaller than a certain threshold, then vehicle 1 brakes (with probability
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1. Background material on mathematical models for traffic flow

1 − P (ρ)) or overtakes the ahead vehicle (with probability P (ρ)). The probability
P (ρ) is assumed to have the same dependence on the local density ρ as in Prigogine’s
model, see Section 1.3.1;

• if vehicle 1 is slower than the leading one and the distance h = x2−x1 between them
is larger than another threshold, then vehicle 1 accelerates;

• two constant thresholds HA, HB are considered to model, respectively, the accel-
eration scenario when h becomes larger than HA (and 0 < v1 < v2 < Vmax), and
the braking/overtaking scenario when the distance h becomes smaller than HB (and
0 < v2 < v1 < Vmax);

• for each threshold i = A,B, the velocity v acquired by vehicle 1 after an interaction
is taken on instantaneously and is given by a distribution function

σ(v, v1, v2; ρ) =

σA(v, v1, v2; ρ), if v1 < v2,

σB(v, v1, v2; ρ), if v1 > v2,
.

Since σ is a density function, for each threshold i = A,B, it has to fulfill∫ Vmax

0
σi(v, v1, v2; ρ)dv = 1.

The dependence of σ on the local density ρ allows to prescribe the post-interaction
speed v as a function of the congestion level of the road;

The kinetic equation is derived by (1.5) describing the collision operator in terms of
the two-particles distribution function f2, that is the joint distribution function such that
f2(t, x1, v1, x2, v2) gives a measure of the joint probability to find vehicle 1 in the state
(x1, v1) and simultaneously vehicle 2 in the state (x2, v2). The collision term writes as

Q[f2] =
∑
i=A,B

Gi[f2]−
∑
i=A,B

Li[f2]

where Gi[f2] and Li[f2] are respectively the gain and loss terms due to the i-th threshold.
Assuming, for simplicity, two equal interaction thresholds so that H := HA = HB, the
form of the gain and the loss term proposed by Klar and Wegener [49] is the following:

G[f2] =
∫ Vmax

0

∫ Vmax

0
|v1 − v2|σ(v, v1, v2; ρ)f2(t, x1, v1, x1 +H, v2)dv1dv2

L[f2] =
∫ Vmax

0
|v − v2|σ(v, v1, v2; ρ)f2(t, x1, v, x1 +H, v2)dv2.

(1.8)

Notice that the interacting vehicles are not supposed to occupy the same position in space,
because of the presence of the pair distribution f2 denoting the distribution function of
vehicles at position x1 with velocity v1 and leading vehicles at position x1 + H with ve-
locity v2. In fact, recalling the above listed microscopic assumptions, interactions, and
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consequently speed transitions, take place among vehicles having distance h = H. There-
fore, the introduction of the thresholds allows to delocalize the interactions, similarly to
the Enskog-like kinetic theory of dense gases.

To obtain from equations (1.8) a closed equation for the sole kinetic distribution f , see
equation (1.4), we need to express the pair distribution f2 in terms of f . To this end, a
modified version of the vehicular chaos assumption introduced in [62] is used, so that

f2(t, x1, v1, x1 +H, v2) = f(t, x1, v1)f(t, x1 +H, v2)k(H, ρ(t, x)) (1.9)

where the function k weights the interactions according to the threshold H and the local
congestion of the road ρ. Its presence in the expression of f2 makes the form of the
collision operator similar to Enskog’s kinetic theory of a dense gas. We refer to the book
of Cercignani and Lampis [14] for further information on this theory.

Thus, the modeling of the collisional operator proposed by Klar and Wegener in [49]
differs from Prigogine’s and Paveri Fontana’s models since now they consider interacting
vehicles being at different positions. In fact, the two kinetic distributions at the right
hand side of (1.9) are evaluated at different points in space. Therefore, the interactions
occur in a range according to the threshold H and this fact allows to anticipate traffic
conditions so that the behavior of a driver is influenced by the disturbances ahead in
the flow. Mathematically, in this case one observes, due to the definition of the collision
operator (1.8), that in equation (1.7) the kinetic distribution function f at position x and
at time t depends not only on the kinetic distribution function at position x′ ≤ x but
also on the kinetic distribution function at x′ > x. This allows backward propagating
disturbances.

Finally, the collision operator defined by (1.8) is made explicit once the expressions
of the probability distributions σA and σB are given. Taking into account the above
assumptions on the microscopic interactions, they write as

σA(v, v1, v2; ρ) = 1
αP (ρ)(Vmax − v)χ[v1,v1+αP (ρ)(Vmax−v)](v), α ∈ [0, 1]

σB(v, v1, v2; ρ) = P (ρ)δv1(v) + (1− P (ρ)) 1
(1− β)v2

χ[βv2,v2](v), β ∈ [0, 1]

where χI is the indicator function of the set I. The expression of σA means that in the
case of acceleration the new speed v is assumed to be uniformly distributed in the interval
[v1, v1 + αP (ρ)(Vmax − v)]. Instead, in the case of σB, the new speed v can either remain
unchanged with respect to the initial velocity v1 (the delta term), or stochastically can
reduce to a fraction of the velocity v2 of the leading vehicle.

The form of the probability distributions σA and σB proposed in [49] and the comparison
with our microscopic choices will be also discussed in the next chapters.

1.3.3 Reduced complexity models
As anticipated at the beginning of this section, Boltzmann-type models can be very

demanding since the integro-differential equation makes it difficult to compute the time
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asymptotic solution of the kinetic equation. For this reason, reduced complexity models, as
lattice-Boltzmann-type models or Fokker-Planck-type models, have been proposed in the
literature. These models are interesting, both from the analytical and the computational
point of view, since they keep the kinetic information on traffic without requiring the
evaluation of the expensive velocity integrals appearing in Boltzmann-type models.

The aim of the class of lattice-Boltzmann-type kinetic models is to take into account
the granular nature of the flow of vehicles, both in space and velocity. Indeed, these models
arise from the assumption that cars along a road tend to cluster, which gives granularity
in space, with a nearly constant speed within each cluster, which makes also the velocity
a discretely distributed variable. For a brief review on the framework that characterizes
these models, we refer to Section 2.3 in which, in particular, we recall the model recently
introduced by Fermo and Tosin in [25, 26] which will be taken as starting point for the
derivation of our models.

In particular, we wish to recall that the spatially inhomogeneous version of Fermo and
Tosin’s model [25] is endowed with the backward propagating waves studied by Klar and
Wegener in [49], see Section 1.3.2. However, in [25] this property is obtained by including
a flux limiter in the expression of the transport term in the kinetic equation, thus without
resort to modeling non-local interactions.

Fokker-Planck-type models

In Chapter 5 we will discuss the effects of the microscopic behaviors on the macroscopic
dynamics. To this end, we need the knowledge of the time asymptotic solution of the
kinetic equation as functions of the microscopic parameters which define the interaction
rules among vehicles. As already anticipated, for this purpose a Boltzmann-type kinetic
model is demanding. For this reason, a different approach is to derive a Fokker-Planck-type
model as a result of a time scaling (the grazing collision limit) of the classical spatially
homogeneous kinetic equation with the aim of replacing the interaction integrals appearing
in the collision operator with differential operators.

Several Fokker-Planck-type models for traffic flow have been proposed in the literature,
in particular to analyze the stationary solutions provided by the kinetic approach. In this
case, the prototype form of a Fokker-Planck-type model is given by the following drift-
diffusion equation:

∂tf(t, v) + ∂v (B[f ]f(t, v)−D[f ]∂vf(t, v)) = 0, (1.10)

in which the dependence of the kinetic distribution f on the space variable x is neglected,
since we are dealing with spatially homogeneous problems. The operators B[f ](t, v) and
D[f ](t, v) are, respectively, the so-called braking/acceleration and diffusive terms.

In [44], Illner, Klar and Materne introduced a Fokker-Planck-type model for modeling
traffic flow on multilane roads. However, here we focus on the simplest version, namely
we consider a single lane road, which includes the case of equation (1.10). In [44], the
braking/acceleration operator B and the diffusive operator D are heuristically given and
they are assumed to depend on moments of the kinetic distribution f , i.e. on macroscopic
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quantities as the density ρ or the mean speed u. The underlying assumption on both
operators is that drivers interact with respect to average quantities and thus no binary
interaction are taken into account. The diffusive term is introduced to model the possibility
of an inexact observation of the average conditions. The following example for the operators
B[f ] and D[f ] is taken from [44]:

B[f ] =

−cB(v − u)2ρ, if v > u,

cA(u− v)2(ρmax − ρ), if v < u

D[f ] = σ(ρ, u) |v − u|γ .

In the above expressions cA and cB are positive constants corresponding to braking and
acceleration, while σ(ρ, u) is a smooth function chosen in such a way that it vanishes rapidly
for large and small values of the density ρ and of the mean speed u. Finally, γ is a positive
constant such that γ < 3 in order to obtain well-defined steady states.

Compared to the formulation given in [44], the above modeling of the operatorsB[f ] and
D[f ] assumes a zero-probability of passing. In [44], the presence of this probability allows
to recover multiple equilibrium solutions and thus the multivalued structure observed in
experimental data. However, the scattering of diagrams is apparent only in a small range
of density values in which, moreover, at most three multiple solutions are obtained.

In [41], Herty and Pareschi, instead, derive a Fokker-Planck-type model as an asymp-
totic limit of a Boltzmann-type model featuring microscopic interactions in which the
drivers react to the mean speed. The authors are mainly interested in establishing links
between Fokker-Planck-type models based on a heuristic modeling of braking/acceleration
and diffusive operators, as the model proposed in [44], and Fokker-Planck type models
obtained as limits of Boltzmann-type equations, thus based on microscopic motivations
for the given form of the operators. For further details, see Chapter 5 in which we will
compare our Fokker-Planck-type model with the work [41]. In fact, the investigations pro-
posed in Chapter 5 and in [85] can be considered as a natural sequel to [41] since we will
focus mainly on the study of macroscopic trends of traffic by means of the fundamental
diagrams
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Chapter 2

Fundamental diagrams in traffic flow:
the case of heterogeneous kinetic
models

2.1 Motivation
Experimental studies on vehicular traffic provide data on quantities like density, flux,

and mean speed of the vehicles. However, the diagrams relating these variables (the funda-
mental and speed diagrams) show some peculiarities not yet fully reproduced nor explained
by mathematical models.

Here, we describe a multi-population kinetic model for traffic flow which draws inspira-
tion from the ideas presented in [7] for macroscopic models, recast in the frame of discrete-
velocity kinetic models [16, 20, 25, 26, 82]. These results have been published in [76].
The main goal is to study fundamental diagrams computed from moments of equilibrium
solutions of the kinetic equations. In particular, considering traffic flow as a mixture of
populations with different microscopic characteristics helps to explain the experimentally
observed scattering of fundamental diagrams in the phase of congested traffic. With this
approach, scattered data in the congested phase are naturally predicted by the model by
taking into account the macroscopic variability of the flux and mean speed at equilibrium
due to the heterogeneous composition of the “mixture”. This conclusion is reached without
invoking further elements of microscopic randomness of the system: for example in [26],
which inspired the present model, the explanation for the scattering of data appeals to the
stochasticity of the drivers’ behavior and to the consequent variability of the microscopic
speeds at equilibrium. Moreover, the models proposed here and in [25, 26] predict a phase
transition between the free and the congested phases of traffic, with a sharp, but mean-
ingful, capacity drop across the phase transition. For a definition of capacity drop see [88]
and references therein.

We wish to stress that we do not propose a model that interpolates experimental data.
Rather, we use experimental data to validate the model we propose.
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In the literature, a variety of multiphase models have been already introduced in order to
reflect the features of traffic, for a review see [10] and references therein. However, typically
these models reproduce a too sharp capacity drop, as in [20, 44], or the information for the
phase transition is prescribed a priori, as in [15] for macroscopic models. The heterogeneity
of traffic flow composition is often described by considering two or more classes of drivers
with different behavioral attributes, see [54, 61]; here the heterogeneity will be described
by introducing two or more classes of vehicles with different physical features, as in [7]
for macroscopic models. In [60] a first attempt to describe the heterogeneity of traffic
in the kinetic framework is proposed. However, the model introduced in [60] takes into
account a large number of microscopic differences characterizing the flow of traffic. This
fact increases the model complexity making difficult the analysis, both from the theoretical
and the numerical point of view. Here, we will show that considering populations which
differ in only two microscopic features is sufficient to explain on the whole the structure of
the experimental data.

In detail, the structure of this chapter is as follows: in Section 2.2 we briefly review
the role of fundamental diagrams in vehicular traffic practice. Next, in Section 2.3, we
describe the discrete-velocity kinetic model developed in [25] by focusing on its spatially
homogeneous version, see [26], which represents the mathematical counterpart of the ex-
perimental setting in which traffic equilibria and fundamental diagrams are measured. In
Section 2.4 we first review the multi-population macroscopic model [7] and then introduce
our new two-population kinetic model, proving in particular its consistency with the orig-
inal single-population model and describing how to compute equilibrium solutions. Then,
in Section 2.5, we present and analyze the resulting fundamental diagrams.

2.2 Fundamental diagrams
Before discussing on the mathematical modeling of traffic flow, we present a brief de-

scription of some basic tools for the analysis of traffic problems, namely the diagrams
which relate the macroscopic flux and mean speed to the vehicle density in homogeneous
steady conditions. The qualitative structure of such diagrams is defined by the properties
of different regimes, or phases, of traffic as outlined in the following.

Flux-density diagrams Also called fundamental diagrams, they report the flow rate of
vehicles as a function of the traffic density ρ, which can be defined as the number
of vehicles per kilometer (Fig. 2.1, right), or as a function of the normalized density
(Fig. 2.1, left). At low traffic densities, the so-called free phase in which interactions
among vehicles are rare, the flux grows nearly linearly with the density until a critical
density value is reached, at which the flux takes its maximum value (road capacity).
Beyond such a critical value traffic switches to the congested phase, which in [46] is
defined as complementary to the free phase. The two phases may be separated by a
capacity drop, across which the flux drops suddenly from its maximum value at free
flow to a lower maximum in the congested phase. In this regime the flux decreases as
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Figure 2.1: Fundamental diagrams obtained from experimental data. Left: measurements provided by
the Minnesota Department of Transportation in 2003, reproduced by kind permission from
Seibold et al. [79]. Right: experimental data collected in one week in Viale del Muro Torto,
Roma, Italy, from [70].

the density increases. In fact interactions among vehicles are more and more frequent
due to the higher packing, which causes faster vehicles to be hampered by slower ones.
The formation of local slowdowns (phantom traffic jams) is first observed. Additional
increments of the density cause a steep reduction of the flux until the so-called traffic
jam is reached, in which the density reaches its maximum value ρmax, called jam
density, and the flux is zero.

Speed-density diagrams They give the mean speed of the vehicles as a function of the
local macroscopic density of traffic. In free flow conditions, vehicles travel at the max-
imum allowed speed (or almost the maximum), which depends on the environmental
conditions (such as e.g., quality of the road, weather conditions, infrastructure), on
the mechanical characteristics of the vehicles, and on the imposed speed limits. This
speed, called the free flow speed, can be reached when there is a large distance among
vehicles on the road. Conversely, in congested flow conditions vehicles travel closer
to one another at a reduced speed, until the density reaches the jam density, at which
vehicles stop and have zero speed.

These diagrams play an important role in the prediction of the capacity of a road and
in the control of the flow of vehicles, see the studies in [1, 46].

Examples of fundamental diagrams provided by experimental measurements are shown
in Fig. 2.1. They clearly exhibit the phase transition between free and congested flow:
below the critical density the flux values distribute approximately on a line with positive
slope, and so the flux can be regarded as a single-valued increasing function of the den-
sity with low, though nonzero, dispersion; conversely, above the critical density the flux
decreases and experimental data exhibit a large scattering in the flux-density plane. In
the congested phase, therefore, the flux can hardly be approximated by a single-valued
function of the density. Moreover, in the plot on the right a capacity drop can also be seen.
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Kinetic models of traffic flow give fundamental diagrams as stationary asymptotic so-
lutions starting from a statistical description of microscopic interactions among vehicles.
In addition, some kinetic models have proved to be able to catch a meaningful transition
from the free to the congested phase of traffic without building the phase transition into
the model, see [25, 26].

However, standard kinetic models do not account for the scattered data typical of the
congested regime. For instance, in [38] multivalued fundamental diagrams are obtained
supposing that the flow aims to stabilize around a multivalued heuristic equilibrium velocity
which is not computed by the model itself. Otherwise, this characteristic of the flow is
explained considering the statistical variability of driver behaviors, who may individually
decide to drive at a different speed than the one resulting from the local density, see
e.g., [26]. Instead, in [44] the multivaluedness of the diagrams is naturally obtained with
a Fokker-Planck-type kinetic model but the scattered data are restricted only in a small
region.

In this thesis, see [76], we propose instead a different interpretation of the scattering
of the flux in congested traffic, based on the consideration that the flow along a road
is naturally heterogeneous. That is, it is composed by different classes of vehicles with
different physical and kinematic characteristics (e.g. size, maximum speed, et cetera).
For this we will extend the aforementioned kinetic models [26] in order to deal with a
mixture of two populations of vehicles, say cars and trucks, each described by its own
statistical distribution function. The core of the model will be the statistical description
of the microscopic interactions among the vehicles of the same population and of different
populations, which will take into account the microscopic differences of the various types of
vehicles. For the sake of simplicity, the model will be described for the case of a mixture of
two populations, but it can be easily generalized to the case of several populations, see [7]
for a macroscopic model and [74] or Chapter 4 for a continuous-velocity kinetic model.

2.3 A discrete kinetic model
In this section we briefly review the kinetic traffic model recently introduced in [25] for

the spatially inhomogeneous case and we focus on its spatially homogeneous version [26].
This model will be the basis for our multi-population extension.

The model proposed in [25] is discrete both in space and in speed. Since in this chap-
ter we focus on the space homogeneous case [26], we describe only the domain of the
microscopic speeds, say V ⊆ [0, +∞), that is

V = {v1, v2, . . . , vj, . . . , vn},

where the vj’s are speed classes such that 0 ≤ vj < vj+1 ∀ j = 1, . . . , n − 1, and v1 =
0, vn = Vmax, Vmax being the maximum speed of a vehicle. For instance, Vmax can be
chosen as a speed limit imposed by safety regulations, or by the state of the road, or by
the mechanical characteristics of the vehicles.
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Recalling that in the kinetic approach we focus on a statistical description of the micro-
scopic states of the vehicles, in the spatially homogeneous model, the microscopic state of a
generic vehicle is given by vj ∈ V . Thus, in the discrete-velocity framework, the statistical
distribution of vehicles is given by the time-dependent functions:

fj = fj(t) : [0, Tmax]→ [0, +∞), j = 1, . . . , n,

i.e. fj(t) is the number of vehicles which, at time t, travel with speed vj.
The macroscopic variables useful in the study of traffic, namely the vehicle density ρ,

flux q, and mean speed u are obtained from the fj’s as statistical moments with respect to
the speed. Thus, in the context of a lattice velocity framework we have

ρ(t) =
n∑
j=1

fj(t), q(t) =
n∑
j=1

vjfj(t), u(t) = q(t)
ρ(t) . (2.1)

As already mentioned in Section 2.2, the experimental diagrams are measured under
flow conditions which are as much as possible homogeneous in space and stationary. Thus
we study the evolution in time of fj(t) due to vehicle interactions towards equilibrium.
The corresponding system of (spatially homogeneous) Boltzmann-type kinetic equations is

dfj
dt = Qj[f , f ], j = 1, . . . , n, (2.2)

where Qj is the j-th collisional operator, which describes the microscopic interactions
among vehicles causing the change of vj in time. We use the vector notation f := {fj}nj=1.
Conservation of mass requires that

n∑
j=1

Qj[f , f ] = 0 ∀ f ,

which ensures dρ
dt = 0.

Stationary flow conditions mean that we are actually interested in equilibrium solu-
tions (if any) to system (2.2), that is constant-in-time solutions f∞ = {f∞j }nj=1 such that
Qj[f∞, f∞] = 0 for all j = 1, . . . , n. In [26], the asymptotic analysis of the kinetic
equation (2.2) is studied. In particular, using a result stated in [20], it is proven that
∀ρ > 0, ∃ ! f∞. Hence equilibrium solutions are parameterized by specific values of the
vehicle density ρ, which is given by the initial condition ρ = ∑n

j=1 fj(0). This fact allows
one to define analytically the fundamental and speed diagrams of traffic by means of the
following mappings:

ρ 7→ f∞ ⇒ ρ 7→ q(ρ) =
n∑
j=1

vjf
∞
j , ρ 7→ u(ρ) = q(ρ)

ρ
.

In particular, if for any given ρ, system (2.2) admits a unique stable equilibrium then these
mappings are indeed functions of ρ; otherwise, they define multivalued diagrams. We
stress that, contrary to macroscopic models, the mapping ρ 7→ q(ρ) is not based on a priori
closure relations but is obtained from the large time evolution of the kinetic distribution
function, as a result of microscopic vehicle interactions.
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2.3.1 Modeling vehicle interactions
The operators Qj model the microscopic interactions among vehicles. Following [25],

the formalization of Qj is based on assigning post-interaction speeds in a non-deterministic
way, consistently with the intrinsic stochasticity of driver behaviors. We report here the
construction of the operator Qj, which will be extended later to the two-population case.
We consider only binary interactions among vehicles, thus the collisional operator can be
written as

Qj[f , f ] = Gj[f , f ]− Lj[f , f ].

Take
Gj[f , f ] :=

n∑
h,k=1

ηhkA
j
hkfhfk and Lj[f , f ] := fj

n∑
k=1

ηjkfk

which are the gain and loss terms, respectively. The coefficients ηhk, ηjk > 0 are the inter-
action rates, which depend on the relative speed of the interacting pairs: ηhk = η(|vk − vh|)
as in [16]. For simplicity, here we will assume the interaction rates independent of the pre-
interaction speeds, so ηhk ≡ η constant. The term Gj counts statistically the number of
interactions which lead, in the unit time, a so-called candidate vehicle with speed vh to
switch to the test speed vj after an interaction with a field vehicle with speed vk. Con-
versely, the term Lj describes the loss of vehicles with test speed vj after interactions with
any field vehicle. Thus the single-population model writes as

dfj
dt =

n∑
h,k=1

ηAjhkfhfk − fj
n∑
k=1

ηfk. (2.3)

For each j = 1, . . . , n, the matrix Aj = {Ajhk}nh,k=1 is called the table of games. It
encodes the discrete probability distribution of gaining the test speed vj:

Ajhk = Prob(vh → vj|vk, ρ), h, k, j = 1, . . . , n,

which in the present model is further parameterized by the macroscopic density ρ so as
to account for the influence of the macroscopic traffic conditions (local road congestion)
on the microscopic interactions among vehicles. We stress that this is a further source of
nonlinearity on the right-hand side of (2.2), besides the quadratic one typical of Boltzmann-
like kinetic equations. Since for each fixed j the coefficients Ajhk constitute a discrete
probability distribution, they must satisfy the following conditions:

0 ≤ Ajhk ≤ 1
n∑
j=1
Ajhk = 1

 ∀ h, k, j = 1, . . . , n, ∀ ρ ∈ [0, ρmax], (2.4)

ρmax > 0 being the maximum density of vehicles that can be locally accommodated on the
road in bumper-to-bumper conditions. These conditions ensure mass conservation.

The table of games of model (2.3) is built appealing to the following assumptions:
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Ansatz 2.1. A candidate vehicle with speed vh can accelerate by at most one speed
class at a time. However, it can decelerate by an arbitrary number of speed classes when
it interacts with a field vehicle with lower speed vk < vh.

Ansatz 2.2. Let P be the probability that a candidate vehicle gets the maximum
possible test speed resulting from an interaction. We assume that P is a decreasing function
of the density ρ.

In more detail, we distinguish three types of interactions which determine completely
the table of games.

• Interaction with a faster field vehicle: in this case we have vh < vk, or h < k.
Following the interaction, we assume that the candidate vehicle can either accelerate
or maintain its speed, thus:

Ajhk =


1− P if j = h

P if j = h+ 1
0 otherwise

h < k = 2, . . . , n. (2.5)

• Interaction with a slower field vehicle: in this case we have vh > vk, or h > k.
Following the interaction, we assume that the candidate vehicle can either maintain
its speed, if for instance there is enough room to overtake the leading field vehicle,
or decelerate to vk and queue up, thus:

Ajhk =


1− P if j = k

P if j = h

0 otherwise
h > k = 1, . . . , n− 1. (2.6)

Notice that in this case P plays the role of a probability of overtaking as defined
in [72, 73].

• Interaction with a field vehicle with the same speed: in this case we have vh = vk,
or h = k. Following the interaction, we assume that the candidate vehicle can
either maintain its pre-interaction speed, or accelerate to overtake the leading vehicle,
or decelerate. Hence the test speed resulting from this interaction is either vj =
vh+1 with probability P , or vj = vh−1 with probability PB, or finally vj = vh with
probability 1 − (P + PB). Thus PB is the probability of braking and it is chosen as
an increasing function of ρ.
We further distinguish three cases, in fact if the candidate vehicle is either in v1 = 0
or in vn = Vmax then it cannot decelerate or accelerate, respectively. Thus:

Aj11 =


1− P if j = 1
P if j = 2
0 otherwise

(2.7a)
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Ajhh =


PB if j = h− 1
1− (P + PB) if j = h

P if j = h+ 1
0 otherwise

h = 2, . . . , n− 1 (2.7b)

Ajnn =


PB if j = n− 1
1− PB if j = n

0 otherwise
(2.7c)

Note that with these choices the candidate vehicle can accelerate at most by one speed
class, which amounts to bounding the maximum acceleration, see [53]. In contrast, the
deceleration is not bounded and this reflects the hypothesis that drivers behave differently
in acceleration and deceleration, see the definition of traffic hysteresis in [88] and references
therein. Moreover, in the third case we use two different probabilities for the acceleration
and deceleration interactions, as proposed also in [36].

Once the interaction rules are assigned, by computing the evolution towards equilibrium
of a given initial condition corresponding to a fixed value of ρ we obtain the fundamental
and speed diagrams depicted in Fig. 2.2 for three different values of the number n of speed
classes. For ρ < 1

2ρmax we recognize the free phase of traffic, in which the flux is an
increasing linear function of the density. Conversely, for ρ > 1

2ρmax we find the congested
phase, in which the specific form of the diagrams predicted by the model depends on the
number n of speed classes. Note that for n = 3 and n = 4 the phenomenon of capacity
drop becomes apparent.

These results confirm that the kinetic approach is able to catch successfully the phase
transition in traffic flow as a consequence of more elementary microscopic interaction rules.
In particular, such a phase transition need not be postulated a priori through heuristic
closures of the flux as a given function of the density. Nevertheless, model (2.3) still provides
a single-valued density-flux relationship. In fact, as shown in [26], for all ρ ∈ [0, ρmax] there
exists a unique stable and attractive equilibrium f∞ = {f∞j }nj=1. Consequently, the flux q
at equilibrium is uniquely determined by the initial density ρ, which does not explain the
scattered data of the experimental diagrams.

2.3.2 Probability of acceleration
The choice of P is crucial in our model and it influences the qualitative structure of

the fundamental diagrams. As in most traffic models, we will assume that accelerating is
less likely in high density traffic, so P is chosen as a decreasing function of ρ. Conversely,
the probability of braking, which is either PB or 1−P , will be an increasing function of ρ.
Following [26] we will choose, unless otherwise stated,

P = α

(
1− ρ

ρmax

)
, PB = (1− α) ρ

ρmax
, 0 ≤ α ≤ 1, (2.8)
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Figure 2.2: Top row: fundamental diagrams, bottom row: speed diagrams obtained from model (2.3)
with n = 2, 3, 4 speed classes, maximum density ρmax = 200 vehicles/km, and uniformly
distributed microscopic speeds in the interval [0, 100 km/h].

where the coefficient α ∈ [0, 1] can be thought of as a parameter describing the environ-
mental conditions, for instance road or weather conditions, with α = 0 and α = 1 standing
for prohibitive and optimal conditions, respectively.

The ansatz (2.8), which is the simplest choice, is chosen by several other authors,
see [36, 48] and in particular the modeling of P is inspired by the standard Prigogine’s
assumption [72, 73]. Clearly, other choices are possible, see below and in particular Sec-
tion 4.4 in which we analyze in detail more sophisticated alternatives. Further, P and PB
can also depend on the local states, i.e. P = P (ρ, vh, vk) making thus P function also of the
relative speeds of interacting vehicles. This would made the model richer, but our results
show that the simple choice P = P (ρ) already accounts for the complexity of macroscopic
data. Thus, unless otherwise stated, in the following we will take P defined by (2.8) and
α = 1. We observe that in this case PB = 0, i.e. the probability of braking is zero when
the two interacting vehicles travel at the same velocity, cf. (2.7b)-(2.7c).

In Figure 2.2 the diagrams of traffic are computed by taking P and PB as in (2.8). The
value of ρc = 1

2ρmax, in which the transition between the two phases of traffic occurs, is
due to the particular choice of P . If we take instead

P = α

(
1−

(
ρ

ρmax

)γ)
, γ > 0 (2.9)

then the critical density ρc decreases when γ < 1, see Figure 2.8 in Section 2.5, and the
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discussion in Section 2.4.3. As proved in [26], ρc is the value of the density at which
a bifurcation of equilibria occurs, representing thus the mathematical counterpart of the
physical phase transition mentioned in Section 2.2.

2.4 Two-population models
Starting from the kinetic approach discussed in the previous section, we now introduce

a model which treats traffic as a mixture of different types of vehicles with different physical
and kinematic characteristics. As far as we know, this is the first attempt to account for
the heterogeneity of traffic in a kinetic model and, at the same time, to propose a deep
analysis of the model itself which allows us to study in details the properties of the traffic
flow by means of fundamental diagrams.

We will see that the proposed structure allows one to account for the nature of scattered
data in experimental diagrams. For the sake of simplicity we will consider a two-population
model, which can be easily extended to more complex mixtures, see [74] or Chapter 4.

Multi-population models of vehicular traffic are already available in the literature, e.g.
see [7, 54, 61]. Here we start from [7], in which the authors describe an M -population
generalization of the Lighthill-Whitham-Richards macroscopic traffic models [59, 77], that
we briefly illustrate in the case of M = 2 species as an introduction to the forthcoming
kinetic approach.

Let Np(t, x) be the number of vehicles of the p-th population, p = 1, 2, contained in a
stretch of road of length L (typically L will be 1 kilometer). The model consists of two
coupled one-dimensional conservation laws:∂tρ1 + ∂xF1(ρ1, ρ2) = 0

∂tρ2 + ∂xF2(ρ1, ρ2) = 0
(2.10)

where ρp = ρp(t, x) = Np(t, x)/L is the macroscopic density of the p-th species, Fp(ρ1, ρ2) =
ρpvp(ρ1, ρ2) its flux function, and vp(ρ1, ρ2) is the speed-density relation, which describes
the attitude of drivers of the p-th population to change speed on the basis of the local
values of ρ1, ρ2. The model is based on the idea that the p-th population is characterized
by vehicles with length lp > 0 and maximum velocity Vp > 0. Then, one can define the
fraction of road occupancy as the dimensionless quantity

s := ρ1l1 + ρ2l2, 0 ≤ s ≤ 1,

and consider the following extension of the Greenshields’ speed-density relation [32]:

vp(ρ1, ρ2) = (1− s)Vp, p = 1, 2.

With these choices, system (2.10) becomes∂tρ1 + ∂x(ρ1(1− s)V1) = 0
∂tρ2 + ∂x(ρ2(1− s)V2) = 0

(2.11)
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with fluxes Fp(ρ1, ρ2) = ρp(1−s)Vp. We notice that the total flux F1 +F2 = (1−s)(ρ1V1 +
ρ2V2) is not a one-to-one function of the fraction of road occupancy s, as there might exist
different pairs (ρ1, ρ2) giving rise to the same value of s and nevertheless to different total
fluxes. This is possible provided l1 6= l2 or V1 6= V2.

2.4.1 A two-population kinetic model
In constructing our two-population kinetic model we confine ourselves to the spatially

homogeneous case, in order to focus on the study of fundamental diagrams. To fix ideas, we
identify the two classes of vehicles with “cars” (C) and “trucks” (T ), respectively. Roughly
speaking, the physical and kinematic differences between them consist in that cars are
shorter and faster than trucks, therefore lC ≤ lT and V C

max ≥ V T
max. Clearly, other choices

are possible, see Section 2.5 and Chapter 4.

Notation. We adopt a compact notation, which makes use of two indices

p ∈ {C, T}, q = ¬ p

to label various quantities referred to either population of vehicles.

We assume that the discrete spaces of microscopic speeds for cars and trucks, VC , VT ,
respectively, are such that VT ⊆ VC , i.e. the speeds accessible to trucks are a subset of
those accessible to cars. For simplicity, we take VC as an equispaced lattice of speeds, i.e.

VC =
{
vj = j − 1

nC − 1Vmax, 1 ≤ j ≤ nC
}
,

where nC is the number of speed classes for cars, then we choose VT = {vj}n
T

j=1 with
nT ≤ nC . In this way the maximum speed of cars is V C

max = Vmax, whereas the maximum
speed of trucks is V T

max = nT−1
nC−1Vmax ≤ Vmax.

On the discrete space Vp we introduce the kinetic distribution function

fp
j = fp

j (t) : [0, Tmax]→ [0, +∞), p ∈ {C, T}, j = 1, . . . , np,

which gives the statistical distribution of p-vehicles traveling with speed vj at time t.
The macroscopic observable quantities referred to such a class of vehicles are recovered as
(cf. (2.1))

ρp(t) =
np∑
j=1

fp
j (t), qp(t) =

np∑
j=1

vjf
p
j (t), up(t) = qp(t)

ρp(t) . (2.12)

We model the evolution of the fp
j ’s by means of the following equation

dfp
j

dt = Qp
j [fp, (fp, fq)] , j = 1, . . . , np (2.13)

where the term Qp
j [fp, (fp, fq)] describes the interactions of p-vehicles with all other vehi-

cles, in which, as a result, the p vehicle assumes the velocity vj. Since we consider only
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binary interactions, we can follow an approach frequently used for mixtures of two gases
in kinetic theory, see e.g., [13, 33, 34], which consists in writing the collisional operator as
the sum of two terms:

Qp
j [fp, (fp, fq)] = Qpp

j [fp, fp] +Qpq
j [fp, fq], j = 1, . . . , np. (2.14)

In particular, the term Qpp
j [fp, fp] accounts for self-interactions within the population p,

i.e., interactions in which p-vehicles play also the role of field vehicles. Conversely, the
term Qpq

j [fp, fq] accounts for cross-interactions between the two populations. Following
the same logic underlying the single-population model, cf. Section 2.3.1, each term is
written as a balance of gain and loss contributions:

Qpp
j [fp, fp] =

np∑
h,k=1

ηp
hkA

p,j
hk f

p
hf

p
k − f

p
j

np∑
k=1

ηp
jkf

p
k

Qpq
j [fp, fq] =

np∑
h=1

nq∑
k=1

ηpq
hkB

pq,j
hk fp

hf
q
k − f

p
j

nq∑
k=1

ηpq
jkf

q
k

j = 1, . . . , np, (2.15)

where Ap,j, Bpq,j, j = 1, . . . , np, are the self-interaction and cross-interaction tables of
games, respectively. Since the coefficients of the two tables of games model the transition
probabilities, we require that

0 ≤ Ap,j
hk , B

pq,j
hk ≤ 1, ∀h, k, j, p, q

np∑
j=1

Ap,j
hk =

np∑
j=1

Bpq,j
hk = 1, ∀h, k, p, q

so that for each h, k fixed, the coefficients Ap,j
hk and Bpq,j

hk with j = 1, . . . , p form indeed
discrete probability densities. This ensures that

np∑
j=1

Qp
j [fp, fq] =

np∑
j=1

Qpp
j [fp, fp] +

np∑
j=1

Qpq
j [fp, fq] = 0,

whence from (2.13) mass conservation for each species is obtained:

d
dt

np∑
j=1

fp
j = dρp

dt = 0.

Finally, the two-population model resulting from (2.13)–(2.15) can be written as

dfp
j

dt =
np∑

h,k=1
ηp
hkA

p,j
hk f

p
hf

p
k +

np∑
h=1

nq∑
k=1

ηpq
hkB

pq,j
hk fp

hf
q
k − f

p
j

(
np∑
k=1

ηp
jkf

p
k +

nq∑
k=1

ηpq
jkf

q
k

)
, (2.16)

for each j = 1, . . . , np.
Here, the interaction rates ηp

hk, η
pq
hk may depend on the type of interacting vehicles and

on the relative speeds between the vehicles, but, for the sake of simplicity, in the following
we will assume that they are constant, let η = ηp

hk = ηpq
hk. In particular, in all numerical

tests, since we are interested in equilibrium solutions, η will be taken equal to 1 without
loss of generality.
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Remark 2.3. In [20], it is proven that for a single-population, if fj(0) ≥ 0 ∀j, then
fj(t) ≥ 0 for all times, and the equilibrium distribution f∞ is uniquely determined by
the initial condition. Here, our numerical evidence suggests that the same properties are
inherited also by the multi-population model when the well balanced scheme of Section 2.4.2
is used. This fact can also be proven, see [74] or Section 4.3.2.

Modeling self- and cross-interactions

The total number of p-vehicles present in a stretch of road of length L > 0 is Np =
L
∑np

j=1 f
p
j . Recall that lp > 0 is the characteristic length of p-vehicles, therefore the total

space occupied by population p along the road is Nplp, while the total space occupied
by all vehicles is S = ∑

p∈{C, T}N
plp. Ultimately, the fraction of road occupancy over the

length L is

s := S

L
=

∑
p∈{C, T}

Np

L
lp =

∑
p∈{C, T}

 np∑
j=1

fp
j

 lp =
∑

p∈{C, T}
ρplp. (2.17)

Let ρp
max be the maximum density of vehicles of the p-th population, which is obtained

when the road is completely filled and ρq = 0. Obviously, given lC , lT , the admissible pairs
of densities (ρC , ρT ) ∈ [0, ρCmax]× [0, ρTmax] are those such that 0 ≤ s ≤ 1.

Notice that ρp
max = 1

lp , therefore s can be rewritten as

s =
∑

p∈{C, T}

ρp

ρp
max

.

From this expression it is clear that s is the natural generalization of the term ρ
ρmax

appear-
ing in the probabilities P , PB of the single-population model, cf. Section 2.3.1. Therefore
we will assume that in the two-population model the transition probabilities depend on s.
In other words, following the same logic of the single-population case, the elements of the
table of games depend on the local state of occupancy of the road, which, when more than
one population is present, is given by s. More precisely, P is a decreasing function of s,
while PB is an increasing function of s. Following (2.8), the simplest choice is

P = α(1− s), PB = (1− α)s. (2.18)

Other choices are possible, as in the case of the γ-law (2.9), see Section 2.4.3 and Fig. 2.8,
or Section 4.4. It would also be possible to consider different reactive behaviors in the
two populations. But the simplest choice, which, as we will see, results in a realistic
macroscopic behavior, is to suppose that both types of vehicles react in the same way to
the single parameter which accounts for the state of occupation of the road, which is s.
The result of this ansatz is that the tables of games differ only in their dimensions.

For the matrices Ap,j we use the same construction as in (2.5)–(2.7c), because they
express self-interactions within either population of vehicles regardless of the presence of
the other population. The only difference is that they are np × np matrices, hence their
dimensions change depending on the specific population.
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The tables of games Bpq,j are instead np × nq rectangular matrices, therefore we need
to slightly revise the basic interaction rules of the single-population model in order to take
into account the different maximum speeds of the two populations in the description of the
speed transitions.

The table BCT,j gives the probability distribution that candidate cars switch to the
test speed vj upon interacting with field trucks. The coefficients BCT,j

hk are constructed as
in (2.5)–(2.7c), considering however that the case (2.7b) applies only for h = 2, . . . , nT ≤
nC and that the case (2.7c) applies only if nT = nC . Thus the matrices BCT,j are nT ×nC .

Conversely, the table BTC,j gives the probability distribution that candidate trucks
switch to the test speed vj upon interacting with field cars. If the candidate truck is
faster than the field car then the coefficient BTC,j

hk is constructed as in (2.6). Instead, when
interactions involve also accelerations it is necessary to consider that the candidate truck
might not be able to increase its speed if it is already traveling at its maximum possible
velocity vnT , which, unless nT = nC , is in general smaller than Vmax. In other words,
in the case (2.5) the option of accelerating may not apply. Hence for candidate trucks
traveling at speed vnT which encounter faster field cars, i.e., cars traveling at speed vk with
k = nT + 1, . . . , nC , we modify the transition probabilities (2.5) as

BTC,j
nT k =

1 if j = nT

0 otherwise,
k > nT .

Notice instead that the other cases which include an acceleration, namely (2.7a) and (2.7b),
can be borrowed from the single-population model without modifications.

Interestingly, model (2.16) along with the tables of games discussed above satisfies an
indifferentiability principle similar to the one valid for kinetic models of gas mixtures, see
e.g., [3]: when all the species composing the gas are identical one recovers the equations of
a single-component gas. In the present case, the indifferentiability principle can be stated
as follows:

Theorem 2.4 (Indifferentiability principle). – Assume that the two types of
vehicles are identical, i.e., they have the same physical and kinematic characteristics, and
fp
j exists ∀ p ∈ {C, T}, ∀ j. Then the total distribution function

fj :=
∑

p∈{C, T}
fp
j (2.19)

obeys the evolution equations of the single-population model (2.3).

Proof. If the two types of vehicles are the same we have lC = lT =: l, ρCmax = ρTmax = 1
l

=:
ρmax. It follows

s = ρC + ρT

ρmax
= ρ

ρmax
.

Since VT ⊆ VC , if the maximum speed is the same then nC = nT := n and VT = VC .
This implies Ap,j = Bpq,j = Aj, the latter being the table of games of the single-population
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model, cf. Section 2.3.1. Further, since the two populations are identical, the interaction
rates are the same. So taking these facts into account and summing (2.16) over p yields

d
dt

∑
p∈{C, T}

fp
j =

n∑
h,k=1

ηhkA
j
hk

 ∑
p∈{C, T}

fp
h

 (fp
k + fq

k )−
 ∑

p∈{C, T}
fp
j

 n∑
k=1

ηjk (fp
k + fq

k ) ,

whence, using the definition (2.19), we have

dfj
dt =

n∑
h,k=1

ηhkA
j
hkfhfk − fj

n∑
k=1

ηjkfk,

which concludes the proof. �

Remark 2.5. In [3] the indifferentiability principle is proved for a model featuring
a single collision operator, which hinders the description of cross-interactions among par-
ticles of different species in the mixture. In more standard models for gas mixtures the
collision terms are separate, as in our case, but the indifferentiability principle holds only
at equilibrium. Here, instead, Theorem 2.4 holds at all times, moreover without having to
merge the two collision terms into one.

2.4.2 A well-balanced formulation for computing equilibria
Our numerical evidence suggests that, for any pair of densities (ρC , ρT ) ∈ [0, ρCmax] ×

[0, ρTmax], with 0 ≤ s ≤ 1, all initial distributions (fC(0) ≥ 0, fT (0) ≥ 0) such that∑np

j=1 f
p
j (0) = ρp, p ∈ {C, T}, converge in time to the same pair of equilibrium distributions

(f∞,C , f∞,T ), which is therefore uniquely determined by ρC and ρT . The proof of this and
other analytical properties can be found in [74] and in Section 4.3.2. To get the correct
equilibrium, however, it is important to devise a well balanced numerical scheme. As we
will see, round-off error can drive the solution to spurious equilibrium states, if the model
is not integrated properly.

Under the simplifying assumption α = 1, in [26] the analytic expressions of stable
equilibria for the single-population model (2.3) are computed. In the general case, it is
necessary to integrate numerically in time the system of ODEs (2.16) until steady state is
reached.

It is worth pointing out that in [26] equilibria are studied by rewriting the loss term
−fj

∑n
k=1 fk of (2.3) in the analytically equivalent form −ρfj. This allows one to take

advantage of the fact that ρ is indeed a parameter of system (2.3) fixed by the initial
condition, since it is constant in time. However, such a simplification cannot be carried
out when the system is integrated numerically, because of instabilities triggered by round-
off errors.

For the sake of simplicity, we illustrate this phenomenon for the single-population
model (2.3) but our considerations apply to the two-population model (2.16) as well. For
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Figure 2.3: Solution to the spatially homogeneous problem for the single-population model obtained
with (continuous line) and without (dashed line) the well-balanced formulation (2.20a). Left
ρ = 0.3, center ρ = 0.5, right ρ = 0.7.

this purpose, we consider the numerical approximation of the following two analytically
equivalent formulations of the single-population model:

dfj
dt =

n∑
h,k=1

Ajhkfhfk − fj
n∑
k=1

fk (2.20a)

dfj
dt =

n∑
h,k=1

Ajhkfhfk − ρfj, (2.20b)

where the first, which we will call well-balanced, leads to the computation of the correct
equilibria while the second does not preserve stationary solutions and possibly leads to a
violation of mass conservation. The context is similar to the construction of well-balanced
numerical schemes for balance laws, where particular care is needed in order to preserve
stationary solutions at the discrete level, see e.g., [57, 63, 64] and references therein.

Let y(t) = ∑n
j=1 fj(t). Summing over j both sides of (2.20a) yields dy

dt = 0 as expected,
while the same operation performed on (2.20b) gives

dy
dt = (y − ρ)y.

In this case y is in general not constant in time and moreover two equilibria exist, y∞1 = 0
and y∞2 = ρ, where the first is stable and attractive, whereas the second is unstable.
This means that mass conservation y(t) = ρ holds for all t if and only if y(0) = ρ and y is
computed without round-off. Otherwise, any small perturbation will drive y away from the
unstable equilibrium y∞2 = ρ towards the stable equilibrium y∞1 = 0 and mass conservation
fails.

Figure 2.3 shows the results of the numerical integration of the two equations (2.20a), (2.20b)
in the simple case with n = 2 speed classes and α = 1, starting from initial conditions
for which the density is ρ = 0.3, ρ = 0.5, or ρ = 0.7 respectively. As proved in [26], the
correct equilibrium distribution is f∞ = (0, ρ) for ρ ≤ 0.5, but from the first two panels of
Fig. 2.3 it can be seen that only the solution of (2.20a) converges to such an equilibrium,
while (2.20b) is attracted toward the state (0, 0) which violates mass conservation. For
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0.5 < ρ < 1 the correct equilibrium distribution f∞ consists instead of two strictly positive
values, which once again are reached only by the numerical solution of the well-balanced
formulation (2.20a) as it is evident from the third panel of Fig. 2.3.

2.4.3 Transition from free to congested phase
In this section, we compute the value of s which determines the transition from the free

to the congested phase. For this purpose, we will compute the equilibria of the system (2.16)
in the free flow phase and we show that the phase transition corresponds to a bifurcation
of equilibrium solutions. Our goal is to investigate analytically the main characteristics of
the fundamental diagrams resulting from our model. In particular, using the equilibria of
the sum of the two distribution functions, we compute the value of occupied space, the
critical space sc, at which the transition from the free to the congested phase occurs, and
we will see how sc depends on the choice of the probability P .

In order to compute the equilibria, we need the explicit expression of the interaction
matrices. We will write the table of games explicitly for the γ-law (2.9), with α = 1. Thus
we have

P = 1− sγ, PB = 0.

As a result, the structure of the tables of games is considerably simplified, nevertheless
the wealth of information which can be extracted from the model is still surprising. Note
also the sparsity pattern of the matrices Ap,j, Bpq,j, which permits a fast evaluation of the
collision terms in (2.13).

Let R := 1 − P . We report only the non zero elements, drawing a circle around the
elements which belong to the j-th row and column of each of the interaction matrices, Ap,j

and Bpq,j respectively. Inside the circle we indicate the value of the corresponding element.
Concerning the self-interaction table of games we have

Ap,1 =



R R R · · · R
R
R
...
R

 , Ap,np =



0
0
...

P P
P · · · P P 1

 ,

while the general expression for 1 < j < np is

Ap,j =



0
...

P P · · · P
P · · · P R · · · R

R
...
R


.
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These matrices are all np × np. The cross-interaction matrices BCT,j between cars (candi-
dates) and trucks (fields) have the same structure as the Ap,j’s, apart from being rectan-
gular of dimensions nC × nT . Differences however arise for j ≥ nT , for example:

BCT,nT =



0
...

P P
P · · · P R

R
...
R


, BCT,nT+1 =


P

P · · · · · · P


and in general

BCT,j =

 P · · · · · · P


, j > nT + 1.

Finally, the cross-interaction matrices BTC,j between trucks (candidates) and cars
(fields) are nT × nC . They can in turn be easily derived from the Ap,j’s, the only dif-
ferent case being the one for j = nT :

BTC,nT =


0
...

P P · · · P
P · · · P 1 1 1

 .

We will assume that the distribution functions are non negative in time provided
fp
j (0) ≥ 0, ∀j. Our numerical evidence supports this assumption, but see also [74] or
Theorem 4.9 and 4.10 in Section 4.3.2 for the analytical proof. Let Fj = ∑

p f
p
j and

ρ = ∑
p ρ

p.
Summing the equations dfp

1
dt = 0 and dfq

1
dt = 0, we have

−R (F1)2 + (2R− 1)ρF1 = 0 (2.21)

which is a quadratic equation whose non-negative roots can be written in terms of P as

F1 =

0
(1−2P )ρ

1−P , if P ≤ 1
2 .
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Since the leading coefficient of the equation (2.21) is negative, the stable and attractive
equilibrium is always the largest root: thus, for P ≥ 1/2, the equilibrium solution is F1 = 0.
Since the two distribution functions are non negative, the equilibrium for each population
is fp

1 = 0, i.e. no vehicle travels with velocity v1 = 0.
Henceforth, we take P ≥ 1/2 and we suppose fp

j−1 = 0, p = C, T , ∀ j < nT (inductive
hypothesis) and we prove that fp

j = 0. By summing again the equations dfp
j

dt = 0, we obtain

−R (Fj)2 + Fj

(1− 3R)
j−1∑
k=1

Fk + (2R− 1)ρ
+ (1−R)Fj−1

ρ− j−2∑
k=1

Fk

 = 0

and using the inductive step, this expression reduces to

−R (Fj)2 + (2R− 1)ρFj = 0

which is identical to (2.21) and thus again has a stable root at Fj = 0 for P ≥ 1/2, closing
the induction. Therefore, if P ≥ 1/2, the stable and attractive equilibrium of each species
is fp

j = 0, ∀ j = 1, . . . , nT − 1. For j = nT , using mass conservation for trucks we have

ρT =
nT∑
j=1

fTj = fTnT .

Thus, for P ≥ 1/2, all trucks travel with the maximum velocity allowed in VT , at equi-
librium. Using this result, the remaining equations for fCj , j = nT , . . . , nC can be written
once fT is known. The equilibrium related to the distribution function of cars traveling
at the velocity vnT can be found by solving the quadratic equation of fCnT resulting from
d
dtf

C
nT = 0:

−R
(
fCnT

)2
+ fCnT

[
(2R− 1)ρC − ρT

]
+RρCρT = 0.

Since the discriminant (expressed in terms of P )

DnT =
[
(1− 2P )ρC − ρT

]2
+ 4(1− P )2ρCρT

is non-negative ∀P ∈ [0, 1], all solutions are real. In particular, clearly they have opposite
sign if ρC and ρT are non zero, and the positive root can be written in terms of P as

fCnT =
(1− 2P )ρC − ρT +

√
DnT

2(1− P ) .

This root represents the stable and attractive equilibrium. This result depends implicitly
on the assumption P ≥ 1/2 because it exploits the fact that f∞,T = [0, . . . , 0, ρT ] which
holds if P ≥ 1/2. For j = nT + 1, . . . , nC − 1, equilibrium distributions of cars result from
the equations

−R
(
fCj
)2

+ fCj

(1− 3R)
j−1∑
k=nT

fCk + (2R− 1)ρC −RρT
+ (1−R)cj = 0,

j = nT + 1, . . . , nC − 1,
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where the coefficient cj is

cj =


fCnT ρ, if j = nT + 1

fCj−1

ρC − j−2∑
k=nT

fCk

, if j = nT + 2, . . . , nC − 1.

Again, the roots of the quadratic equation are real and of opposite sign. The largest one
is expressed in terms of P as

fCj =
(3P − 2)

j−1∑
k=nT

fCk + (1− 2P )ρC − (1− P )ρT +
√
Dj

2(1− P ) , j = nT + 1, . . . , nC − 1

and it is the stable and attractive equilibrium, where

Dj =
(3P − 2)

j−1∑
k=nT

fCk + (1− 2P )ρC − (1− P )ρT
2

+4(1−P )Pcj, j = nT+1, . . . , nC−1

is the non-negative discriminant of the equation for fCj , j = nT + 1, . . . , nC − 1.
Finally, by mass conservation, the asymptotic distribution related to cars traveling at

the maximum velocity vnC is

fCnC = ρC −
nC−1∑
k=nT

fCk .

Note that if there are no trucks, ρT = 0, the equilibrium distribution for the cars is
f∞,C = [0, . . . , 0, ρC ]. Since now the equilibrium distributions are known, we obtain the
total flux of vehicles in the case P ≥ 1/2,

q(ρC , ρT ) = ρTvnT +
nC∑
j=nT

vjf
C
j . (2.22)

Therefore the flux depends not only on P , but also on the composition of the mixture.
When the critical value P = 1/2 is crossed, fCj , fTj , j = 1, . . . , nT − 1 are turned on,
meaning that there are vehicles at lower velocities. This leads to a decrease in the flow
values.

We conclude that the maximum flow is found for P = 1/2, which means that the critical
space, across which the phase transition occurs, is given by sc = (1/2)1/γ. Thus the critical
space depends on the particular γ-law chosen.

The maximum traffic flow is obtained at P = 1/2, for ρT = 0, and it corresponds to
Vmaxρ

C
max/21/γ, because then P = 1/2 implies that the flow is composed only of cars trav-

eling at maximum speed, thus the slope of the fundamental diagram is strongly dependent
on Vmax. A more detailed study of equilibria and of dependence of phase transition on the
choice of P (ρ) is shown in [74] and in Chapter 4 of this thesis.
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Table 2.1: Parameters of model (2.16) common to all simulations.

Parameter Description Value
α Environmental parameter 1
lC Typical length of a car 4 m
lT Typical length of a truck 12 m
ρCmax Maximum car density 250 vehicles/km
ρTmax Maximum truck density 83.3 vehicles/km
Vmax Maximum speed 100 km/h

2.5 Fundamental diagrams of the two-population model
In this section we investigate numerically the fundamental diagrams resulting from the

two-population kinetic model (2.16). As we will see, they do not only capture the main
qualitative features of the experimental diagrams of Fig. 2.1, including especially the data
dispersion in the congested flow regime, but they also provide tools to better understand
the behavior of traffic at the macroscopic scale.

In all cases studied, system (2.16) is integrated numerically up to equilibrium, using the
well balanced formulation (2.20a). Once the equilibrium distributions have been computed,
the flux and the mean speed are obtained as moments of the kinetic distributions as
indicated in (2.12). Since in the space homogeneous case the total density ρ = ∑

p ρ
p is

constant in time, it acts as a parameter, fixed by the initial condition, characterizing the
macroscopic quantities.

As a matter of fact, each ρp is also constant in time, therefore the fraction of road
occupancy s defined in (2.17) remains also stationary. It is then possible to study the
flux and mean speed at equilibrium as functions of the density, and also as functions of s.
Summarizing, we will study two types of equilibrium diagrams:

• Flux-density diagrams, that is diagrams relating the total flux at equilibrium q =∑
p q
∞,p = ∑

p
∑np

j=1 vjf
∞,p
j to the total density ρ = ∑

p ρ
p, which corresponds to

the total number of vehicles per unit length, irrespective of the size of the different
vehicles. Experimental diagrams are indeed expected to represent such a relationship.

• Flux-space diagrams, that is diagrams relating the total flux at equilibrium to the
fraction of road occupancy s.

Except when otherwise stated, all simulations are performed with the parameters indi-
cated in Table 2.1. Initially we consider nC = 3 speed classes for cars and nT = 2 speed
classes for trucks, hence the corresponding spaces of microscopic speeds are

VC = {0, 50 km/h, 100 km/h}, VT = {0, 50 km/h},

cf. Section 2.4.1.
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Table 2.2: Deterministic pairs (ρC , ρT ) used in the fundamental diagrams of Figs. 2.4–2.6 for given values
of the fraction of road occupancy s.

Combination type Marker Expression ρC ρT

Space occupied mostly by cars Crosses ρT lT = 1
2ρ

C lC 2s
3lC

s
3lT

Space evenly occupied by cars and trucks Circles ρT lT = ρC lC s
2lC

s
2lT

Space occupied mostly by trucks Dots ρT lT = 2ρC lC s
3lC

2s
3lT
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Figure 2.4: Flux-space diagrams for the three conditions of road occupancy listed in Table 2.2.

In Fig. 2.4 we show the flux-space diagrams of each class of vehicles obtained us-
ing deterministic initial conditions: for each s ∈ [0, 1] we select three prototypical pairs
(ρC , ρT ) ∈ [0, ρCmax] × [0, ρTmax] such that ρC lC + ρT lT = s, corresponding to different
conditions of road occupancy, cf. Table 2.2. The resulting fundamental diagrams are
qualitatively similar to those obtained from the single-population model (2.2) with analo-
gous numbers of speed classes. For instance, the fundamental diagram of the trucks alone
compares well with the one shown in Fig. 2.2 with n = 2 speed classes.

All plots in Fig. 2.4 show clearly that there is a critical fraction of occupied space,
beyond which the flow starts to decrease. On the top section of the figure, the two sub-
plots show that the critical space for each species changes depending on the mixture we
consider. In fact, the space occupied by a class of vehicles is only one contribution to
the fraction of occupied space which determines the transition matrices. In other words,
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Figure 2.5: Flux-space diagrams. Left: deterministic choice of the pairs (ρC , ρT ) according to Table 2.2.
Right: random choice of the pairs (ρC , ρT ) for each s ∈ [0, 1].

even the dynamics of a single species depends on the dynamics of the complete mixture.
Consequently, the flow depends on the composition of traffic.

In the bottom section of the figure, the flow of cars and trucks is shown as a function of
the total fraction of occupied space s. One can immediately note that there is a single value
for the critical space which corresponds to sc = 1

2 for all three combinations. This result
seems to suggest that the transition from the free to the congested phase does not depend
on how the road is occupied but on how much of it is occupied. This value of sc depends
on the particular choice γ = 1 in the expression of the probability P , see Section 2.4.3.

In Fig. 2.5 we compare the fundamental diagrams obtained by using either the three
deterministic pairs (ρC , ρT ) given in Table 2.2 or three pairs chosen randomly for each s.
The left of Fig. 2.5 shows the total flux as a function of s, again, for the three combinations
of Table 2.2, and on the right for three random combinations, for each fixed s. Here the role
of the critical value s = 1

2 is even more apparent. In spite of the apparent data dispersion,
this diagram does not reproduce the experimental data, because the information brought
by the fraction of road occupancy s is too synthetic to take into account the heterogeneity
of traffic.

Motivated by this argument, now we turn to flux-density diagrams, which give the flux
as a function of the number of vehicles per kilometer. Indeed experimental fundamental
diagrams are expected to result out of this type of observations. In this case, the composi-
tion of traffic is taken into account, because the same fraction of occupied space s ∈ [0, 1]
can be obtained by different initial densities ρC , ρT .

Again, for each s ∈ [0, 1] the graphs in Fig. 2.6 are obtained by taking three pairs
(ρC , ρT ) corresponding to the combinations reported in Table 2.2. The plots on the left
correspond to the flux of each single species, as a function of its corresponding number
density (top) and of the total number of vehicles (bottom). The plot on the right gives the
total flux as a function of the total number of vehicles. This deterministic choice allows
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Figure 2.6: Flux-density diagrams for the three conditions of road occupancy listed in Table 2.2.
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Figure 2.7: Flux-density diagram of the complete mixture obtained with three random pairs (ρC , ρT )
for each s ∈ [0, 1]. Left: nC = 3, nT = 2; right: nC = 4, nT = 3. Blue star markers: data
for s ≤ 0.8; cyan circle markers: data for s > 0.8.

us to look at the transition from free to congested phase. Here, each combination has a
different critical value of the density for the phase transition, which depends on the ratio
of the different species within the mixture. But we know from Fig. 2.5 that each of these
critical values of the density will correspond to the single value s = 1

2 . Note that the plot
on the right begins to resemble the experimental fundamental diagrams of Fig. 2.1.

By sampling three random pairs (ρC , ρT ) for any given s ∈ [0, 1] we obtain the fun-
damental diagrams illustrated in Fig. 2.7, which clearly capture the main characteristics
of the experimental diagrams discussed in Section 2.2. In particular, at low densities the
total flux grows nearly linearly with small dispersion, while at higher densities it decreases
with larger dispersion due to the frequent interactions between fast and slow vehicles. In
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Figure 2.8: Fundamental diagrams with nC = 4 and nT = 3 velocity classes and probability transition
P = 1−

√
s. The maximum speeds Vmax = 100 km/h (on the left) and Vmax = 130 km/h (on

the right) are considered. The diagrams are obtained with three random pairs (ρC , ρT ) for
each s ∈ [0, 1]. Blue star markers: data for s ≤ 0.8; cyan circle markers: data for s > 0.8.

the graph, cyan circles indicate the total density-total flux pairs obtained for s ∈ (0.8, 1],
whereas blue stars indicate those obtained for s ∈ [0, 0.8]. As a matter of fact, the latter
are the most likely to occur in practice, since even in traffic jams vehicles attain seldom a
state of maximum density and complete stop (see e.g., Fig. 2.1, where a residual movement
always appears). Note also that the plot on the right exhibits a capacity drop across the
critical density. The behavior of the model with respect to the number of discrete velocities
is analyzed in [75] or in Chapter 3.

In Figures 2.4-2.7 the transition probabilities were P = 1 − s and PB = 0, as given
in (2.18). This choice determines flux-space diagrams in which the transition from free
to congested phase occurs at the value s = 1/2 for any composition of the mixture, see
Figures 2.4, 2.5 and Section 2.4.3. This leads to fundamental diagrams in which the
maximum value of the flow is reached when ρT = 0 and ρ = ρCmax/2 = 125 vehicles/km,
see Figures 2.6 and 2.7, because in this case the flow is composed only of cars traveling
at their maximum speed. Choosing instead P = 1 − sγ, with γ < 1, the phase transition
occurs at sc =

(
1
2

) 1
γ and it decreases when γ is decreased. In particular, in the left plot of

Figure 2.8 we consider γ = 1/2 and we observe that the fundamental diagram, obtained
with nC = 4 and nT = 3, shows a better reproduction of experimental data, see Section 2.2,
Figure 2.1. In the right plot, instead, we consider γ = 1/2 but Vmax = 130 km/h, showing
that a greater maximum speed causes an increase in the slope of the diagram in the free
flow phase.

The examples discussed so far suggest that the bulk characteristics of traffic at equi-
librium could be predicted deterministically once the composition of traffic, i.e., the pair
(ρC , ρT ), is known. This induces to interpret the scattering of data in the congested phase
as a consequence of the possible heterogeneity of vehicles in traffic, for a given level of road
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Figure 2.9: Top row: flux-density diagrams, bottom row: speed-density diagrams vs. the total density
for two populations of vehicles having either the same length and different microscopic speeds
(left) or different lengths and same microscopic speeds (right). Blue star markers: data for
s ≤ 0.8; cyan circle markers: data for s > 0.8.

occupancy, rather than as an effect of the unpredictability of driver behaviors.
This affirmation can be articulated more precisely, by considering the 2-population

model in which vehicles differ by only one characteristic. The plot on the left of Figure 2.9
shows the flux-density diagram when the two classes of vehicles have the same length, but
they differ in their maximum speed: VC = {0, 50, 80, 100} and VT = {0, 50, 80}. We can
interpret this case as thinking that vehicles are now identical, but we are considering two
different types of driver, according to the maximum speed they are willing to settle on
when the road is free (say, fast and slow drivers). The plot on the right of Figure 2.9 is
obtained by considering vehicle classes which have different lengths, as given in Table 2.1,
but the same microscopic speeds.

By inspecting them we infer that differences in the speeds (in particular, the maximum
ones) of the vehicles composing the traffic mixture seem to be responsible for the small
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Figure 2.10: Mean speed versus fraction of road occupancy s for cars (blue) and trucks (red) having
either the same length and different microscopic speeds (left) or different lengths and same
microscopic speeds (right). Cyan circle markers refer to data for s > 0.8.

scattering of the data in the free flow phase, whereas differences in the length determine
the larger scattering of the data in the congested flow phase.

The same two cases are further investigated in Fig. 2.10 by focusing on the speed
diagram vs. the fraction of road occupancy s. In particular, when vehicles have different
microscopic speeds but same length (diagram on the left) we deduce that, in free flow
conditions, the slower population is not affected by the faster one, while fast drivers may
have to slow down due to their interactions with slower cars. On the other hand, both
types of drivers are forced to slow down, reaching finally the same mean speed, as the
road becomes congested. Conversely, when vehicles have the same microscopic speeds but
different lengths (diagram on the right) we discover that the mean speed is the same for
both populations in both traffic regimes, i.e., in other words, it is a one-to-one function of
the fraction of occupied space.

These remarks are indeed consistent with daily experience of driving on highways: in
free flow drivers can choose their speed, and thus they keep different maximum speeds
according to their driving style, while in congested flow they tend to travel all at the same
speed, which steadily decreases as the traffic congestion increases.

Finally, Figure 2.11 shows the fundamental diagram for the traffic mixture modeled by
the two-population macroscopic model [7] summarized in Section 2.4. It is immediate to
notice that there is no trace of the sharp phase transition predicted by our kinetic model
and that the scattering of the data is very high also at low densities.
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Figure 2.11: Flux-density diagram of the two-population macroscopic model [7], see also (2.11), obtained
by sampling three random pairs (ρ1, ρ2) for every s ∈ [0, 1]. Blue star markers: data for
s ≤ 0.8; cyan circle markers: data for s > 0.8.
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Chapter 3

Kinetic models for traffic flow
resulting in a reduced space of
microscopic velocities

3.1 Motivation
In Chapter 2 we have introduced a multi-population kinetic model which allows us to

recover and to provide a possible explanation the origin of the scattering of the experimental
measurements. The model is proposed in the framework of the discrete-velocity kinetic
theory, following the approach in [25, 26]. However, we think that the hypothesis of a
lattice of speeds does not reflect the dynamics of traffic. In fact, the experience suggests
that the velocities of vehicles along a road span continuously the whole space of admissible
speeds.

The assumption of a discrete space of velocities leads also to the following drawbacks.
First of all, observe that the interaction rules, proposed in Section 2.3.1 for a single-
population model and generalized to the multi-population model in Section 2.4.1, prescribe
that the output speed after an acceleration is ruled by the number of speeds in the lattice.
In fact, we have assumed that the candidate vehicle can accelerate from the actual speed
vh to the post-interaction speed vh+1, see left panel of Figure 3.1. This means that the
model is not able to account for the physical acceleration of vehicles which, in a realistic
framework, should not depend on the size of the lattice. Moreover, the model does not
give information on the choice of the size of the discrete space of speeds and, resting on
the case of the single-population model (2.3), the limit of the fundamental diagram does
not fit experimental data when the number of discrete speeds goes to infinity, see the right
panel of Figure 3.1.

For these reasons, in [75] and in this chapter, we relax the hypothesis of a discrete-
velocity space. Therefore, following the classical Boltzmann-like setting of binary interac-
tions, we study a kinetic model based on a continuous-velocity space. However, usually the
interaction integrals appearing in kinetic Boltzmann-type models for traffic flow based on
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Figure 3.1: Left: post-interaction speed (red filled circles) prescribed by the discrete-velocity model (2.3)

after an acceleration. Right: limit of the fundamental diagram provided by the discrete-
velocity model (2.3) for n→∞.

a continuous-velocity space, see e.g. [48], typically do not provide the analytical expression
of the equilibrium distribution and they are very demanding from a computational point of
view. Instead, the model proposed here does not suffer from the aforementioned drawbacks.
We focus only on spatially homogeneous problems and we propose two models which differ
in the modeling of acceleration interactions: one is based on quantized velocity jumps, i.e.,
if acceleration occurs the new speed is obtained by increasing the pre-interaction velocity of
a fixed quantity ∆v (δ model); the other one is based on a continuous uniform distribution
defined on a bounded interval parametrized by ∆v (χ model), see also [48, 49].

The models are characterized by the presence of a finite parameter ∆v. The introduc-
tion of ∆v allows us to model the physical velocity jump performed by vehicles when they
increase their speeds as a result of an interaction. Clearly, this parameter may depend
on the mechanical characteristics of vehicles, see [74], but here we will assume that ∆v is
fixed. In the section on macroscopic properties, Section 3.5, we show that ∆v is related
to the maximum acceleration and we discuss how this parameter can be chosen through
experimental data used by Lebacque [53].

We investigate the equilibria of the δ model, both from an analytical and a numer-
ical point of view. Analytically we find that velocity distributions formed by a linear
combination of Dirac delta may be equilibria only if the delta are centered at velocities
spaced by multiples of ∆v. Next, we compute equilibria using a numerical scheme capa-
ble of converging also to possible absolutely continuous equilibria. Here, actually, we find
only the quantized equilibria described above, independently of the discretization param-
eters. This fact suggests that the class of discrete-velocity equilibria is the only one that
the continuous-velocity Boltzmann-type δ model possesses. This situation is summarized
graphically in Figure 3.2.

The chapter is organized as follows. In Section 3.2 we briefly recall the Boltzmann-type
kinetic equation and we specialize it by giving two sets of interaction rules. The resulting

50



3. Kinetic models for traffic flow resulting in a reduced space of
microscopic velocities

Boltzmann
continuous-velocity:
f(t, v) s.t.
∂tf(t, v) = Q[f, f ](t, v)

Boltzmann
discrete-velocity:
fj(t), j = 1, . . . , N s.t.
d
dtfj(t) = Qj[f , f ](t)
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Figure 3.2: Connection between the δ model and a discrete-velocity model, having the same steady-state
distribution.

δ and χ models are discussed in depth in Section 3.3 and in Section 3.4, respectively.
In particular, in Section 3.3 we prove the existence of a class of quantized steady-state
distributions. Since we are unable to prove their uniqueness, we discretize the model by
approximating the kinetic distribution with a piecewise constant function and we then
show by numerical evidence that the class of stationary solutions of the δ model is only
the one we have already studied analytically. In Section 3.4, we show the somewhat
surprising result that the equilibrium distributions of the perhaps more natural, but more
complex and more computationally demanding, χ model yield a macroscopic flow that
is extremely well approximated by the discrete-velocity-based closure law resulting from
the δ model. This is illustrated in the final section Section 3.5, where we show that the
fundamental diagrams, that is the flux-density relationships, obtained from the two models
tend to coincide under grid refinement. Next we compare these diagrams with experimental
data, finding that our models reproduce well experimental fundamental diagrams and thus
they capture the characteristics of macroscopic traffic flow. Further, we compute the
macroscopic acceleration induced by the model, proving in particular its link with ∆v.

3.2 The general form of the kinetic model
In this section we briefly recall the general structure of a Boltzmann-type kinetic traffic

model, which we will then specialize by prescribing a set of binary interaction rules in
order to derive two models which differ only in the modeling of the acceleration interaction.
Both models are defined on a continuous-velocity space and they are characterized by a
parameter ∆v related to the typical acceleration of a vehicle.
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We will focus on the space homogeneous case, because we want to investigate the
structure of the collision term and of the resulting equilibrium distributions. In particular,
we show that the simplified model (δ model) permits to describe the complexity of the
equilibrium solutions with a very small number of discrete velocities.

Let f = f(t, v) : R+×V → R+ be the kinetic distribution function, where V = [0, Vmax]
is the continuous-domain of the microscopic speeds and Vmax is the maximum speed, which,
as discussed in Section 2.4.1, may depend on the mechanical characteristics of the vehicles,
on imposed speed limits, environmental conditions (such as the quality of the road, the
weather conditions, etc). The statistical distribution f is such that f(t, v)dv gives the
number of vehicles with velocity in [v, v + dv] at time t.

As usual, macroscopic quantities are obtained as moments of the distribution function
f with respect to the velocity v:

ρ(t) =
∫
V
f(t, v)dv, q(t) =

∫
V
vf(t, v)dv, u(t) = 1

ρ(t)

∫
V
vf(t, v)dv

where ρ is the density, i.e. the number of vehicles per unit length (tipically, kilometers),
u is the macroscopic speed and q = ρu is the flux of vehicles. Note that ρ can also be
interpreted as the reciprocal of the average distance between cars, see [5].

In the homogeneous case, the Boltzmann-type equation can be written as

∂tf(t, v) = Q[f, f ](t, v) (3.1)

where Q[f, f ](t, v) is the collisional operator which describes the relaxation to equilibrium
due to the microscopic binary interactions among vehicles. For mass conservation to hold,
the collision term must satisfy ∫

V
Q[f, f ](t, v)dv = 0.

In fact, this ensures that, in the space homogeneous case, the density remains constant in
time.

The collisional operator is usually split into a gain term G[f, f ] and a loss term L[f, f ],
that model statistically the interactions which lead to gain or to loose the test speed
v. Denoting with A(v∗→v|v∗) the probability that the velocity v ∈ V results from a
microscopic interaction between candidate vehicles with velocity v∗ and field vehicles with
speed v∗, we write the model as an integro-differential equation

∂tf(t, v) =
∫
V

∫
V
η(v∗, v∗)A(v∗→v|v∗)f(t, v∗)f(t, v∗)dv∗dv∗︸ ︷︷ ︸

G[f,f ](t,v)

− f(t, v)
∫
V
η(v, v∗)f(t, v∗)dv∗︸ ︷︷ ︸
L[f,f ](t,v)

(3.2)
in which η(v∗, v∗) is the interaction rate possibly depending on the relative speed of the
interacting vehicles, e.g. η(v∗, v∗) = |v∗−v∗| as in [48]. Although such a choice would make
the model richer, in [76] we found that a constant interaction rate is already sufficient to
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account for many aspects of the complexity of traffic. Another possibility is to consider η
as dependent on the local congestion of the road, that is η = η(ρ). However this is not
relevant in the homogeneous case, where ρ is constant, for then η would affect only the
relaxation time towards equilibrium. Thus in this case we will set η =constant.

Notation. In the whole chapter, in order to shorten formulas, we adopt the following
traditional shorthand f(t, v∗) = f∗, f(t, v∗) = f ∗, etc. Note in particular that in the space
homogeneous case f ∗ and f∗ are not different distribution functions, but the evaluation of
the same f(t, v) at two different points v∗ and v∗.

We will suppose that A depends also on the macroscopic density ρ in order to account for
the influence of the macroscopic traffic conditions (local road congestion) on the microscopic
interactions among vehicles, see [37, 48, 73, 76]. Thus, we suppose that A fulfills:

Ansatz 3.1.

A(v∗→v|v∗; ρ) ≥ 0, and
∫
V
A(v∗→v|v∗; ρ)dv = 1, for v∗, v∗, v ∈ V , ρ ∈ [0, ρmax]

where ρmax is the maximum density of vehicles, for instance the maximum number of
vehicles per unit length in bumper-to-bumper conditions.

Remark 3.2. Any transition probability density A that satisfies Ansatz 3.1 guaran-
tees mass conservation since

∂t

∫
V
f(t, v)dv =

∫
V
Q[f, f ](t, v)dv =∫

V

∫
V
f(t, v∗)f(t, v∗)dv∗dv∗ −

∫
V
f(t, v)dv

∫
V
f(t, v∗)dv∗ = 0.

3.2.1 Choice of the probability density A
The probability density A has, at the continuous level, the same role of the table of

games introduced in Section 2.3.1. Thus, it assignes a post-interaction speed in a non-
deterministic way, consistently with the intrinsic stochasticity of the drivers’ behavior.
The construction of A is at the core of a kinetic model. Here, it is obtained with a very
small set of rules.

• If v∗ ≤ v∗, i.e. the candidate vehicle is slower than the field vehicle, the post-
interaction rules are:

Do nothing: the candidate vehicle keeps its pre-interaction speed with probability
1− P1, thus v = v∗;

Accelerate: the candidate vehicle accelerates to a velocity v > v∗ with probability
P1.

• If v∗ > v∗, i.e. the candidate vehicle is faster than the field vehicle, the post-
interaction rules are:
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Accelerate: in order to overtake the leading vehicle, the candidate vehicle acceler-
ates to a velocity v > v∗ with probability P2;

Brake: the candidate vehicle decelerates to the velocity v = v∗ with probability
1− P2, thereby queuing up and following the leading vehicle.

From the previous rules, we observe that the probability density A has a term which
will be proportional to a Dirac delta function at v = v∗, due to the interaction which
preserves the pre-interaction microscopic speed (the “Do nothing” alternative). Note that
this is a “false gain” for the distribution f , because the number of vehicles with speed v is
not altered by this interaction.

In the following, we assign the speed after braking as proposed in [72] and used also
in [25, 26] and in Chapter 2 in the context of a discrete-velocity model. Namely, we suppose
that if a vehicle brakes, interacting with a slower vehicle, it slows down to the speed v∗ of
the leading vehicle. Thus, after the interaction it gets the speed v = v∗ without overtaking
the leading field vehicle. Instead, for the post-interaction speed due to acceleration we
propose two different models.

Quantized acceleration (δ model): the output velocity v is obtained by accelerating
instantaneously from v∗ to the velocity min {v∗ + ∆v, Vmax}. Considering all possible
outcomes, the resulting probability distribution, in this case, is

A(v∗→v|v∗; ρ) =

(1− P1)δv∗(v) + P1δmin{v∗+∆v,Vmax}(v), if v∗ ≤ v∗

(1− P2)δv∗(v) + P2δmin{v∗+∆v,Vmax}(v), if v∗ > v∗.
(3.3)

Uniformly distributed acceleration (χ model): the new velocity v is uniformly dis-
tributed between v∗ and min{v∗+∆v, Vmax}. On the whole, the resulting probability
distribution becomes

A(v∗→v|v∗; ρ) =

(1− P1)δv∗(v) + P1
χ[v∗,min{v∗+∆v,Vmax}](v)

min{v∗+∆v,Vmax}−v∗ , if v∗ ≤ v∗

(1− P2)δv∗(v) + P2
χ[v∗,min{v∗+∆v,Vmax}](v)

min{v∗+∆v,Vmax}−v∗ , if v∗ > v∗.
(3.4)

Note that the acceleration of a vehicle in (3.3) is similar to the one assumed in [25, 26]
and in Chapter 2, for the models based on a discrete-velocity space. However, there
the acceleration parameter ∆v is chosen as the distance between two adjacent discrete
velocities, thus ∆v depends on the number of elements in the speed lattice. In the present
framework, instead, ∆v is a physical parameter that represents the ability of a vehicle
to change its pre-interaction speed v∗. With this choice, ∆v does not depend on the
discretization of the velocity space and, at the same time, the maximum acceleration is
bounded, as in [53]. In contrast, deceleration can be larger than ∆v, and this fact reflects
the hypothesis that drivers tend to brake immediately if the flow becomes more congested,
while they react more slowly when they can accelerate (see the concept of traffic hysteresis
in [88] and references therein).
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The acceleration performed in the χ model has some points of contact with the micro-
scopic rules prescribed in [41, 48]. In [41], however, the post-interaction speed is selected
through a random process in the interval [v∗, Vmax]. Here instead, the post-interaction speed
is deterministic. In [48] instead, the velocity after acceleration is uniformly distributed over
a range of speeds between v∗ and v∗+α(Vmax− v∗), where α is supposed to depend on the
local density; in a similar way, the output velocity from a braking interaction is assumed
to be uniformly distributed in [βv∗, v∗], with β ∈ [0, 1].

In the following, the probabilities P1 and P2 are taken as P1 = P2 =: P and P will be
a decreasing function of the local density only, as already assumed in Ansatz 2.2 and in
Section 2.3.2, following for instance the choices in [36, 72, 78]. In particular, from now on,
we take P as in (2.9) with γ ∈ (0, 1] and α = 1.

The simplified choice P1 = P2 and the interaction rules described at the beginning of
this section guarantee the continuity of the transition probability (3.3) and (3.4) along
v∗ = v∗.

Remark 3.3. Both choices (3.3) and (3.4) for A include terms of the form δv∗(v),
which actually describe false gains mentioned above, because the velocity of the candidate
vehicle does not change. They are automatically compensated by false losses, as it can be
seen by rewriting the classical kinetic loss term of equation (3.2) in the following form:

L[f, f ](t, v) =
∫
V

∫
V
ηδv∗(v)f∗f ∗dv∗dv∗.

3.3 The δ velocity model
Now, we focus on the steady states of model (3.3). We start with the existence of

a particular set of equilibrium solutions of the continuous model, which are computed
analytically. Next, we consider a finite volume discretization of the model, and we show
that the discrete equilibria have precisely the structure found before analytically, thus
suggesting that the particular set of equilibria found analytically are the only equilibria of
the system.

It can be proven [28] that the Cauchy problem associated to (3.2) is well posed provided
the probability density A is Lipschitz continuous with respect to v∗ and v∗ in a suitable
Wasserstein metric. This is indeed the case of the A defined in (3.3), with P1 = P2.

Using the expression (3.3) for A, we rewrite the gain term in (3.2) as

G[f, f ](t, v) =η
∫
V

∫
V

[
(1− P )δmin{v∗,v∗}(v) + Pδmin{v∗+∆v,Vmax}(v)

]
f∗f

∗dv∗dv∗

and the following important result on the existence of a particular class of stationary
solutions holds. More precisely, it characterizes the equilibrium distributions having the
form of linear combinations of Dirac’s masses. This theorem establishes the connection
represented by the left vertical arrow in Figure 3.2.
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Theorem 3.4. – Let P be a given function of the density ρ ∈ [0, ρmax] such that
P ∈ [0, 1]. Let {vj}nj=1 be a set of velocities in [0, Vmax]. The distribution function

f∞(v) =
n∑
j=1

f∞j δvj(v), f∞j > 0 ∀ j = 1, . . . , n,

with ∑n
j=1 f

∞
j = ρ, is a weak stationary solution of the δ model provided vj = v1 + j∆v,

j = 1, . . . , n.

Proof. Without loss of generality suppose that {vj}nj=1 is an ordered set of velocities such
that 0 ≤ v1 < · · · < vn ≤ Vmax. Since the distribution function f∞(v) = ∑n

j=1 f
∞
j δvj(v)

is a weak stationary solution of the δ model, it satisfies the following steady weak form of
equation (3.2):∫

V

∫
V

(∫
V
φ(v)A(v∗→v|v∗; ρ)dv

)
f∞(v∗)f∞(v∗)dv∗dv∗ − ρ

∫
V
φ(v)f∞(v)dv = 0,

where φ ∈ Cc(V) is a test function, with Cc(V) the space of continuous functions having
compact support contained in V , and the probability density A is given in (3.3). Substi-
tuting the expression of f∞ in the above equation we obtain

(1− P )
n∑
k=1

k∑
h=1

φ(vh)f∞h f∞k + (1− P )
n∑
k=1

n∑
h=k+1

φ(vk)f∞h f∞k

+ Pρ
n∑
h=1

φ(min{vh + ∆v, Vmax})f∞h − ρ
n∑
j=1

φ(vj)f∞j = 0.
(3.5)

The proof will be organized as follows: in order to determine an equation for the f∞j ’s, we
consider a particular family of test functions φj defined as piecewise linear functions such
that φj(vj) = 1 and φj(vi) = 0, ∀ i 6= j; in this way, first we find an equation for f∞1 , then
we show that f∞2 6= 0 if v2 = v1 + ∆v and finally by induction we prove that if f∞j 6= 0,
then vj = v1 + j∆v, for some j ∈ {1, . . . , n}.
Let j = 1, equation (3.5) with φ = φ1 becomes

(1− P )
n∑
k=1

f∞1 f∞k + (1− P )
n∑
h=2

f∞h f
∞
1 + Pρ

n∑
h=1

φ1(v1 + ∆v)f∞h − ρf∞1 = 0.

Due to the particular construction of φ1 and using ∑n
j=1 f

∞
j = ρ, the above expression

reduces to
−(1− P )(f∞1 )2 + (1− 2P )ρf∞1 = 0

which admits the two roots f∞1 = 0 and f∞1 = ρ1−2P
1−P . If P > 1/2, only f∞1 = 0 is

acceptable, because the other root is negative. If instead P < 1/2, both roots can be
accepted, but only f∞1 = ρ1−2P

1−P > 0 is stable. This argument will be used for selecting a
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single root throughout the proof.
Now, let j = 2 and φ = φ2. Equation (3.5) writes as

−(1− P )(f∞2 )2 + [(1− 2P )ρ− 2(1− P )f∞1 ] f∞2 + Pρ
n∑
h=1

φ2(min{vh + ∆v, Vmax})f∞h = 0.

(3.6)
Note that φ2(min{vh + ∆v, Vmax}) = 1 if h = 1 and v1 + ∆v = v2. While φ2(min{vh +
∆v, Vmax}) = 0 otherwise, due to the particular choice of φ2 which is centered in v2 and
can be taken with support smaller than 2 |v2 − v1 −∆v| around this point. Then, if v2 6=
v1 + ∆v, the constant coefficient of (3.6) is zero for all P ∈ [0, 1] and the solutions of the
equation are f∞2 = 0 or f∞2 = ρ1−2P

1−P − 2f∞1 . Exploiting the structure of f∞1 and the fact
that f∞j ≥ 0, only f∞2 = 0 is the admissible solution for all values of P ∈ [0, 1].
Instead, if v2 = v1 + ∆v, the third term in equation (3.6) is Pρf∞1 ≥ 0, for all P ∈
[0, 1]. More precisely, if P ≥ 1/2 then f∞1 = 0, thus the constant coefficient vanishes and
again one concludes that f∞2 = 0. While if P < 1/2, Pρf∞1 is positive and since the
discriminant D = ((1− 2P )ρ− 2(1− P )f∞1 )2 +4P (1−P )ρf∞1 of equation (3.6) is positive
and the leading coefficient is negative, the equation has two real roots with opposite signs.
Therefore

f∞2 = −(1− 2P )ρ+ 2(1− P )f∞1 −
√
D

−2(1− P ) > 0

and this is the only case in which f∞2 can be non-zero.
We now proceed by induction. Suppose that vk − v1 is an integer multiple of ∆v and

f∞k =


0, if P ≥ 1/2

−(1− 2P )ρ+ 2(1− P )
k−1∑
l=1

f∞l −
√
Dk

−2(1− P ) , if P < 1/2

for all k = 3, . . . , j−1, whereDk =
(
(1− 2P )ρ− 2(1− P )∑k−1

l=1 f
∞
l

)2
+4P (1−P )ρ∑k−1

l=1 f
∞
l .

We show that f∞j can be non-zero only if vj = v1 + j∆v, for j ∈ {1, . . . , n}.
Taking the test function φ = φj, the equation for f∞j writes as

−(1−P )(f∞j )2+
(1− 2P )ρ− 2(1− P )

j−1∑
l=1

f∞l

 f∞j +Pρ
n∑
h=1

φj(min{vh+∆v, Vmax})f∞h = 0.

(3.7)
Note that φj(min{vh+∆v, Vmax}) = 1 if h = j−1 and vj−1 +∆v = vj. While φj(min{vh+
∆v, Vmax}) = 0 otherwise, due to the particular choice of φj which is centered in vj and can
be taken with support smaller than 2 |vj − vj−1 −∆v| around this point. If vj = v1 + j∆v,
then vj = vj−1 + ∆v and the above equation becomes

−(1− P )(f∞j )2 +
(1− 2P )ρ− 2(1− P )

j−1∑
l=1

f∞l

 f∞j + Pρf∞j−1 = 0
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which has two real roots. If P ≥ 1/2, using the inductive hypothesis f∞k = 0 for all
k ≤ j−1. Thus f∞j = ρ1−2P

1−P (which is again not acceptable since it is negative) or f∞j = 0,
confirming the induction. If P < 1/2, we have two real roots with opposite signs, so one
proves that f∞j can be chosen strictly positive.
If instead vj 6= v1 + j∆v then the constant term of equation (3.7) is zero and the two
roots are f∞j = 0 and f∞j = Sj = (1−2P )ρ−2(1−P )

∑j−1
l=1 f

∞
l

1−P which is negative for all values of
P ∈ [0, 1] using the Lemma 3.5 below. �

In the previous proof we use the following technical fact.

Lemma 3.5. – Let P be a given function of the density ρ ∈ [0, ρmax] such that P ∈ [0, 1].
Consider {fj}Kj=1 ∈ R defined as

fj =
2(1− P )

j−1∑
l=1

fl − (1− 2P )ρ− Cj

−2(1− P )
with Cj > 0. Assume that fj is positive for all j. Then,

Sk =
(1− 2P )ρ− 2(1− P )

k−1∑
l=1

fl

1− P < 0

for all 2 ≤ k ≤ K.

Proof. We proceed by induction on k. Let k = 2:

S2 = (1− 2P )ρ− 2(1− P )f1

1− P = − C1

1− P < 0.

Suppose Sj < 0, j = 3, . . . , k − 1, then Sk < 0. In fact,

Sk = Sk−1 − 2fk−1 < 0. �

3.3.1 Discretization of the model
Observe that Theorem 3.4 ensures the existence of a class of steady solutions for the

δ model which are characterized by the fact that the total mass of vehicles on the road
is distributed only on the velocities which are multiples of ∆v. We cannot prove the
uniqueness of such a class of steady solutions. However we can show by numerical evidence
that the asymptotic distributions of the δ model are only of the type stated by Theorem 3.4.
Thus, in this subsection we introduce a discretization of the model (3.3).

To this end, the explicit formulation of the gain term is now useful. Notice that the
Dirac delta function at v = min {v∗ + ∆v, Vmax} can be split as

δmin{v∗+∆v,Vmax}(v) =

δv∗+∆v(v), if v∗ ∈ [0, Vmax −∆v]
δVmax(v), if v∗ ∈ (Vmax −∆v, Vmax]
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v
δv
2

δv
2δv

Figure 3.3: Left: ratio between ∆v and Vmax. Right: discretization of the velocity space.

because the velocity jump of size ∆v, leading to the output velocity v = v∗ + ∆v, can be
performed only if v∗ ≤ Vmax −∆v. If instead v∗ ∈ (Vmax −∆v, Vmax], the post-interaction
velocity will be v = Vmax. Thus the gain term of the δ model can be written as

G[f, f ](t, v) =η(1− P )f(t, v)
[∫ Vmax

v
f ∗dv∗ +

∫ Vmax

v
f∗dv∗

]

+ ηPρ

[
f(t, v −∆v)H∆v(v) + δVmax(v)

∫ Vmax

Vmax−∆v
f∗dv∗

] (3.8)

where Hα(x) denotes the Heaviside step function with jump located in α, namely Hα(v) :=
d
dv max{0, v − α}, α ∈ R. The last term in the expression of G means that, as a result of
the microscopic interactions, the mass Pρ

∫ Vmax
Vmax−∆v f∗dv∗ is allocated entirely to the speed

Vmax. Note that, in space-nonhomogeneous models, f∗ and f ∗ may refer to distributions
evaluated at different locations in space, see for instance [48] and [49]. For this reason we
keep the integrals over field and candidate particles separate.

We suppose for simplicity that the fixed parameter ∆v satisfies the following assump-
tion:

Ansatz 3.6. The velocity jump ∆v is an integer submultiple of the maximum speed
Vmax so that ∆v = Vmax/T with T ∈ N, see the left panel of Figure 3.3.

We discretize the velocity space defining the velocity cells Ij = [(j − 3
2)δv, (j − 1

2)δv] ∩
[0, Vmax], for j = 1, . . . , n. Note that all cells have amplitude δv = Vmax/(n− 1) except I1
and In which have amplitude δv/2, see the right panel of Figure 3.3.

We consider a piecewise constant approximation of the kinetic distribution so that

f(t, v) ≈ fδv(t, v) =
n∑
j=1

fj(t)
χIj(v)
|Ij|

, (3.9)

where fj represents the number of vehicles traveling with velocity v ∈ Ij.
By integrating the kinetic equation (3.1) over the cells Ij and using fδv(t, v) in place of

f(t, v) we obtain the following system of ordinary differential equations

f ′j(t) = Qj[fδv, fδv](t) :=
∫
Ij
Q[fδv, fδv](t, v)dv, (3.10)
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dr+e
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1
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dr−e

dr+e

dr+e
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j

j

j − dre+ δdre,dr+e
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dr+e
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Ajδ for j = n

n− dr−e

n

n

P

Figure 3.4: Structure of the probability matrices of the δ model, with ∆v = Vmax/2.

whose initial conditions f1(0), . . . , fn(0) are such that
n∑
j=1

fj(0) =
∫
V
f(t = 0, v)dv = ρ

and ρ is the initial density, which remains constant during the time evolution in the spatially
homogeneous case.

We set r := ∆v/δv ∈ R+ and we define r+ := r + 1
2 , r

− := r − 1
2 . Then Idr+e is the

cell which contains v = ∆v, where dr+e denotes the integer part of r+. By computing the
right hand side of the ODE system (3.10), we obtain explicitly

1
η
Qj[f, f ](t) =(1− P )f jfj + (1− P )fj

n∑
k=j+1

fk + (1− P )f j
n∑

h=j+1
fh (3.11a)

− fj
n∑
k=1

fk, for j = 1, . . . ,
⌈
r−
⌉

1
η
Qj[f, f ](t) =(1− P )f jfj + (1− P )fj

n∑
k=j+1

fk + (1− P )f j
n∑

h=j+1
fh (3.11b)

+ Pρ
[
2f1 min{1

2 ,
⌈
r+
⌉
− 1

2 − r}+ δdre,dr−ef2(
⌈
r−
⌉
− r)

]
::::::::::::::::::::::::::::::::::::::::::::::::::::::

− fj
n∑
k=1

fk, for j =
⌈
r+
⌉

1
η
Qj[f, f ](t) =(1− P )f jfj + (1− P )fj

n∑
k=j+1

fk + (1− P )f j
n∑

h=j+1
fh (3.11c)

+ Pρ
[
(1 + δdre,dr+eδj,dr+e+1)fj−dre(1 + r − dre) + fj−dre+1(−r + dre)

]
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

− fj
n∑
k=1

fk, for j =
⌈
r+
⌉

+ 1, . . . , n− 1
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1
η
Qn[f, f ](t) =(1− P )fnfn (3.11d)

+ Pρδdre,dr+e

[
fn−dr+e(r −

⌈
r−
⌉
) + fn−dr−e(

⌈
r+
⌉
− 1

2 − r)
]

:::::::::::::::::::::::::::::::::::::::::::::::::::::::

Pρfn−dr−e

[1
2δdre,dr

−e + (r −
⌈
r−
⌉

+ 1
2)
]

+ Pρ
n∑

h=n−dr+e+2
fh

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

− fn
n∑
k=1

fk,

where here δi,j’s are Kronecker’s delta’s. The terms with a wavy underline are those
deriving from the acceleration term. In the formulae above, the position of the index of
the components of f = [f1, . . . , fn]T ∈ Rn distinguishes the distribution of the field and of
the candidate vehicles: bottom right for the candidate vehicles (as in fh), top right for the
field vehicles (as in fk). In vector form:

d
dtfj = η

[
fTAjδf − fTej1T

nf
]
, j = 1, . . . , n (3.12)

where ej ∈ Rn denotes the vector with a 1 in the j-th component and 0’s elsewhere,
1T
n = [1, . . . , 1] ∈ Rn. The matrices Ajδ have a sparse structure, shown in Fig. 3.4 in which

the nonzero elements are shaded with different hatchings, corresponding to the different
values of the elements, as indicated in the panels in which they appear for the first time.

As it can be checked using (3.11), these matrices are stochastic with respect to the
index j, i.e. ∑n

j=1

(
Ajδ
)
hk

= 1, ∀h, k ∈ {1, . . . , n}. This property comes from Ansatz 3.1,
and it guarantees mass conservation.

Recall that the elements of the matrix
(
Ajδ
)
hk

are the probabilities that the candidate
vehicle with velocity in Ih, interacting with a field vehicle with velocity in Ik, acquires a
velocity in Ij. The fact that these matrices are sparse means that a velocity in Ij can be
acquired only for special values of the velocity of candidate and field vehicles. In particular,
the j-th row of the matrix Ajδ contains the probability of what we called “false gains” in
Remark 3.3, that is the probability that the candidate vehicle does not change its speed.
The non zero elements of the j-th column are the probabilities that a candidate vehicle
acquires a speed in Ij by braking down to the speed of the leading vehicle. The non zero
rows, located at h = j − dre+ δdre,dr+e, h− 1 and h+ 1, contain the probabilities that the
candidate vehicle accelerates by ∆v, acquiring therefore a velocity in v∗+ ∆v ∈ Ij starting
from a velocity v∗ in Ih−1, Ih or Ih+1. The band between the rows j−dre+ δdre,dr+e+2 and
j − 1 is filled with zeros, because in the δ model the acceleration is quantized. As we will
see in Section 3.4.1, this band will be filled by non zero elements in the χ model, where the
acceleration is distributed uniformly between [v∗, v∗ + ∆v], where v∗ is the actual speed of
the candidate vehicle.

In Table 3.1 we summarize the numerical parameters introduced in order to discretize
the continuous-velocity model.
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Table 3.1: Table of the numerical parameters.

Parameter Description Definition
n Number of discrete speeds –
δv Cell amplitude δv = Vmax/n−1

r Ratio between the speed jump ∆v and the cell amplitude δv r = ∆v/δv
T Number of speed jumps ∆v contained in [0, Vmax] T = Vmax/∆v

r

Aj
δ for 1 ≤ j ≤ r

j

j

1−P

r

Aj
δ for r < j < n

j

j − r

j

P

r

Aj
δ for j = n

n− r

n

n

Figure 3.5: Structure of the probability matrices of the δ model with δv integer sub-multiple of ∆v.

Remark 3.7. Model (3.12) has the same structure of the single-population model (2.2)
introduced in [26]. However, (3.12) differs from (2.2) because now the interaction matri-
ces (already called table of games in Chapter 2 in the context of discrete-velocity spaces)
depend on the finite parameter ∆v, which allows us to separate the physical and the
discretization parameters.

δv as integer sub-multiple of ∆v. For the special choice of the velocity grid which
ensures that r = ∆v/δv ∈ N, then the formulae (3.11) simplify as follows:

1
η
Qj[f, f ](t) =(1− P )f jfj + (1− P )fj

n∑
k=j+1

fk + (1− P )f j
n∑

h=j+1
fh (3.13a)

− fj
n∑
k=1

fk, for j = 1, . . . , r

1
η
Qj[f, f ](t) =(1− P )f jfj + (1− P )fj

n∑
k=j+1

fk + (1− P )f j
n∑

h=j+1
fh + Pρfj−r

:::::::
(3.13b)

− fj
n∑
k=1

fk, for j = r + 1, . . . , n− 1
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Figure 3.6: Approximation of the asymptotic kinetic distribution function obtained with two acceleration
terms ∆v = 1/T , T = 3 (top), T = 5 (bottom), and n = rT + 1 velocity cells, with
r ∈ {1, 4, 8}; ρ = 0.3 (left) and ρ = 0.6 (right) are the initial densities. We mark with red
circles on the x-axes the center of the T + 1 cells obtained with r = 1.

1
η
Qn[f, f ](t) =(1− P )fnfn + Pρ

n∑
h=n−r

fh
:::::::::::

− fn
n∑
k=1

fk (3.13c)

The resulting interaction matrices are given in Figure 3.5. Notice that the rows j − r ± 1
are filled with zeros. In fact, since δv is an integer sub-multiple of ∆v, a velocity in Ij can
be obtained as result of an acceleration only if the pre-interaction speed is a velocity in
Ij−r.

The structure of the matrices Ajδ determines the equilibrium of the discrete model (3.12).
In Figure 3.6 we show the function

f∞δv (v) := lim
t→∞

fδv(t, v)

obtained by integrating numerically the system of equations up to steady state, for a few
typical cases. In all numerical tests we take P = 1− ρ (that is as in (2.9) with α = γ = 1),
and with Vmax = ρmax = 1. As initial macroscopic densities, we choose ρ = 0.3, 0.6 (plots
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Figure 3.7: Evolution towards equilibrium of the discretized model (3.12) with n = 4 (green), n = 7
(blue) and n = 10 (red) grid points. The acceleration parameter ∆v is taken as Vmax/3 and
the density is ρ = 0.6. Black circles indicate the equilibrium values.

to the left and right of the figure). We consider two values for the acceleration parameter,
∆v = Vmax/T , T = 3, 5 (top and bottom of the figure). The number of velocities in the
grid is taken as n = rT + 1, with r ∈ {1, 4, 8}. The three curves in each plot contain the
data for the cell averages of the equilibrium distribution for the different values of r. It is
clear that in all cases, f∞δv (v) is a function of the density ρ and it approaches a series of
delta functions, centered in the velocities which are multiples of ∆v and indicated in the
picture by red dots on the horizontal axis.

This means that, as δv → 0, only a finite number, precisely T + 1, of velocities carry a
non-zero mass of vehicles at equilibrium. More precisely, the discrete asymptotic function
f∞δv (v) is different from zero only in the T + 1 cells I1, Ir, I2r, . . . , In. Therefore, as time
goes to infinity the number of nonzero values of the fj’s appearing in (3.9) is univocally
determined by the acceleration term ∆v = Vmax/T .

The previous considerations can be supported by the numerical results in Figure 3.7,
in which we show the evolution towards equilibrium of the fj’s, j = 1, . . . , n. In this
figure, ∆v = Vmax/3, and the different plots are obtained starting from a uniform initial
distribution, namely in (3.9) we take fj(t = 0) = ρ/n,∀j = 1, . . . , n, with r = 1 (green),
r = 2 (blue) and r = 3 (red), which correspond to n = 4, 7 and 10 velocity cells respectively,
and ρ = 0.6. It is clear that under grid refinement the number of nonzero steady values
does not change. In fact, note that a different dynamics towards equilibrium is observed,
for different values of the number n of cells, but as equilibrium is approached, the values
of the fj’s go to zero except for the velocities corresponding to integer multiples of ∆v.
Moreover, the non zero values of the steady-state distribution f∞δv do not depend on the
discretization parameter δv. This fact can be also deduced by looking at equations (3.11)
of the discrete collision operator. These expressions are not functions of δv. Thus all exact
values of the equilibria can be obtained using a coarse grid.

Theorem 3.9 below confirms, with an analytical proof, the structure of the equilibria
that we have just observed in the numerical results and it states that the steady-state
solution of the δ model, prescribed by Theorem 3.4, can be reconstructed numerically on
the grid with δv = ∆v. To this end, we first recall a result from [20], where the existence
and well posedness of the solution of such systems is proved and then we show that the
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discrete equilibria of additional equations resulting from the choice r > 1 give actually no
contribution.

Theorem 3.8. – (Delitala-Tosin) Let fj(t = 0) ≥ 0, with ∑n
j=1 fj(t = 0) = ρ, be the

initial condition for the system
d
dtfj = fTAjf − fTej1T

nf , j = 1, . . . , n,

where the matrices Aj are stochastic matrices with respect to the index j, i.e. ∑j A
j
hk = 1

for all h, k. Then there exists t∗ = +∞ such that the system admits a unique non-negative
local solution f ≥ 0 satisfying the a priori estimate

||f(t)||1 = ||f0||1 = ρ ∀t ∈ (0, t∗ = +∞].

The following result, together with Remark 3.10, shows that all equilibria of the discrete
model are of the quantized form described by Theorem 3.4. Thus the next Theorem
establishes the correspondences symbolized by the right vertical and the middle horizontal
arrows in Figure 3.2.

Theorem 3.9. – Let P be a given function of the density ρ. For any fixed ∆v =
Vmax/T , T ∈ N, let f∞r (ρ) denote the vector of the equilibrium solutions of the ODE sys-
tem (3.12), obtained on the grid with spacing δv given by ∆v = rδv with r = (n−1)/T ∈ N.
Then

(f∞r )j =

(f∞1 )d jre if mod (j − 1, r) = 0
0 otherwise

is the unique stable equilibrium and the values of f∞1 depend uniquely on the initial density
ρ, with ∑T+1

k=1 (f∞1 )k = ρ.

Proof. We already know from Theorem 3.8 that the solution of (3.12) exists, is non-negative
and is uniquely determined by the initial condition.

To prove the statement, we compute explicitly the equilibrium solutions of (3.12), using
the explicit expression of the collision kernel given in (3.11a), (3.11b), (3.11c) and (3.11d),
with r ∈ N and n = rT+1. Since here we are interested in the solutions of the homogeneous
problem, we will take identical distributions for the candidate and the field vehicles, i.e.
fj = f j.

For j = 1, using the expression (3.11a) and the fact that ∑n
k=1 fk = ρ we obtain

d
dtf1 = 0 ⇔ −(1− P )f 2

1 + (1− 2P ) ρf1 = 0.

This is a quadratic equation for f1, which has the two roots f1 = 0 and f1 = ρ(1−2P )/(1−
P ). It is easy to see that one solution is stable, and the other one unstable, depending on
the value of P . Here we are interested only in the stable root, so we find

(f∞r )1 =

0 P ≥ 1
2

ρ1−2P
1−P otherwise

(3.14)
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Thus, no vehicle is in the lowest speed cell I1 if P ≥ 1
2 , which, for the simple case P = 1−ρ

means that all cars are moving if ρ ≤ 1
2 .

The case j = 1 we just computed is typical. Also for larger values of j, we find a
quadratic equation for the unknown fj, which involves only previously computed values of
fk, k < j. Thus, we can easily compute iteratively all components of f∞r .

For 2 ≤ j ≤ r, the equilibrium equation is obtained by using again the expres-
sions (3.11a) with r ∈ N. Then

−(1− P )f 2
j +

(1− 2P )ρ− 2(1− P )
j−1∑
k=1

fk

 fj = 0.

Start from j = 2. Clearly, for P ≥ 1
2 , substituting equation (3.14), we again have (f∞r )2 = 0.

For P < 1
2 , the equation for f2, with f1 given by (3.14), becomes

−(1− P )f 2
2 − (1− 2P ) ρf2 = 0.

Comparing with the equation for f1, we see that now the stable root is f2 = 0. Thus, at
equilibrium, we have (f∞r )2 = 0, for all values of P . Analogously, it is easy to see that
(f∞r )j = 0, ∀j = 3, . . . , r.

For r + 1 ≤ j < n, in place of (3.11a), we use (3.11b) and (3.11c) in order to obtain
the equilibrium equation. Then

−(1− P )f 2
j +

(1− 2P )ρ− 2(1− P )
j−1∑
k=1

fk

 fj + Pρfj−r = 0. (3.15)

The equation has a positive discriminant

Dj =
(1− 2P )ρ− 2(1− P )

j−1∑
k=1

fk

2

+ 4P (1− P )ρfj−r

thus it always admits two real roots. To fix ideas, let us consider r + 1 ≤ j ≤ 2r. If
j = r + 1, since (f∞r )k = 0, ∀k = 2, . . . , r, equation (3.15) becomes

−(1− P )f 2
r+1 + [(1− 2P )ρ− 2(1− P )f1] fr+1 + Pρf1 = 0.

Thus, we find (f∞r )r+1 = 0 for P ≥ 1/2, because the equation for fr+1 becomes identical
to (3.3.1). If instead P < 1/2, substituting the expression for f1, the equation for fr+1
becomes

−(1− P )f 2
r+1 − (1− 2P )ρfr+1 + ρ2P (1− 2P )

1− P = 0.

This equation has a negative and a positive real root, which is stable. Thus

(f∞r )r+1 =


0 P ≥ 1

2

−(1− 2P )ρ+ ρ
√

(1− 4P 2)
2(1− P ) otherwise.
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Figure 3.8: Cumulative density at equilibrium for several values of δv → 0. The density is ρ = 0.6 and
∆v is chosen as 1/3 (left), 1/5 (right).

Now, let r + 1 < j ≤ 2r. Since fj−r = 0, the constant term of equation (3.15) is zero.
Then, as seen for j = 2, . . . , r, it is easy to prove that, for each j = r + 2, . . . , 2r and for
all values of P , one solution is negative and thus (f∞r )j = 0.

Clearly, this procedure can be repeated and we find that

(f∞r )j =


0 P ≥ 1

2

−2(1− P )
j−1∑
k=1

fk + (1− 2P )ρ+
√
Dj

2(1− P ) otherwise

if j = lr + 1, l = 0, . . . , T − 1, while (f∞r )j = 0 otherwise. From these considerations,
the thesis easily follows. Finally, just note that for the last value, fn, we can use mass
conservation

(f∞r )rT+1 = (fr)n = ρ−
T−1∑
l=0

(fr)lr+1(ρ). �

Notice that the result above proves that equilibria are determined by the initial density
ρ, which is constant in time in the spatially homogeneous case, but they do not depend
on the number of cells n used to approximate the kinetic distribution. In fact, the stable
equilibria just computed correspond exactly to the values f∞j given in Theorem 3.4 and
they can all be recovered on the coarse grid δv = ∆v, i.e. choosing r = 1.

Remark 3.10 (The case of a generic δv). In order to further investigate the
existence of stable equilibria, we can seek more general ones numerically. In fact, the finite
volume discretization (3.9) is capable of converging to absolutely continuous equilibria, but
so far we proved that it converges to sums of Dirac masses if δv is an integer submultiple
of ∆v. Here we apply our discretization scheme with non-integer ratios r = ∆v/δv and
show that the resulting equilibria converge, in the sense of distributions, to the equilibria
already described in Theorems 3.4 and 3.9.
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When r = ∆v/δv is not integer, Theorem 3.9 cannot be applied, but numerical inte-
gration of equation (3.12) shows that, for large time, the solution approaches equilibria
that have masses concentrated at points spaced by ∆v. More precisely, in this more gen-
eral case, only a small finite number of components of f∞r are nonzero and the cumulative
distribution function induced by the discrete f∞δv (v), cf. (3.9),

Fδv(v) =
∫ v

0
f∞δv (v)dv, v ∈ [0, Vmax],

approximates the cumulative distribution of a sum of Dirac masses centered at multiples of
∆v. That is, Fδv(v) converges to a piecewise constant function with jump discontinuities
at multiples of ∆v. See Figure 3.8.

Furthermore, Figure 3.8 shows that the jump discontinuities of the cumulative distri-
bution in the limit δv → 0 are located exactly in the points computed analytically by
Theorem 3.9 in the case r ∈ N. In particular, the figure shows the cumulative distribution
at equilibrium computed by solving numerically (3.12) for several values of the discretiza-
tion parameter δv with non-integer ratio ∆v/δv. In both panels the density is ρ = 0.6,
while ∆v = 1/3 in the left plot and ∆v = 1/5 in the right one. The continuous red curve
represents the cumulative distribution of the stationary solution for δv = ∆v, computed
by Theorem 3.9. The black dotted curve is computed with n = 15 velocity cells, the green
dot-dashed line with n = 30 and finally the blue dashed one with n = 60. We observe that
as δv → 0 the cumulative distribution tends to that of the analytic solution of Theorem 3.4,
where only the velocities centered in multiples of ∆v give rise to a jump discontinuity.

We conclude the section with a few remarks on the structure of the equilibria of (3.12).

Remark 3.11 (Reduced velocity space). The δ model is characterized by a
small number of non-trivial values for the microscopic velocities, which allows one to com-
pute analytically the equilibrium of the system. This fact provides an analytic closure
of the macroscopic equations. This fact can also be exploited from a numerical point of
view, justifying the use of a small number of discretization points in simulations aimed
at capturing equilibrium effects. In this sense, the model seems to suggest that kinetic
corrections can be accounted for with a computational cost which is not much higher than
the one needed for a macroscopic model.

Remark 3.12 (Unstable equilibria). Theorem 3.9 gives the uniqueness of the
stable equilibrium of the model with ∆v/δv = r ∈ N. Unstable ones may occur if the initial
condition is such that f1(0) = 0. In fact, the interaction rules related to the case v∗ > v∗

do not generate a post-interaction velocity v which is less than v∗. Thus if f1(0) = 0, i.e. if
there are no vehicles with velocity v1 = 0 at the initial time, there will not be interactions
leading to an increase of f1. This consideration can be generalized: if fj(0) = 0 for
j = 1, . . . , j̄ < r, then the computed equilibria will be fj = (f∞r )j−j, where fr is the vector
containing the stable equilibria. In this sense, the equilibrium solution of the δ model does
not only depend on ρ but also on the initial condition f(0, v). These solutions however are
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Figure 3.9: Evolution towards equilibrium, ρ = 0.7, T = 4, n = 17. Left: fj(t = 0) ≡ ρ/n. Middle:
fj(t = 0) = 0, j = 1, 2, 3, fj(t = 0) ≡ (ρ/(n − 3)), j > 3. Right: f1 = ε = 10−6, f2 = f3 = 0
and fj(t = 0) ≡ ((ρ− ε)/(n− 3)). The thick lines highlight the components fj and the blue
ones are for those that appear in stable equilibria, i.e. with j = kr + 1 for k = 0, . . . , T .

time
0 50 100 150 200 250 300

di
st

an
ce

 fr
om

 e
qu

ili
br

iu
m

10 -9

10 -8

10 -7

10 -6

10 -5

10 -4

10 -3
T=5, 0=1E-4

;=0.2, r=1
;=0.3, r=1
;=0.4, r=1
;=0.6, r=1
;=0.7, r=1
;=0.8, r=1
;=0.2, r=2
;=0.3, r=2
;=0.4, r=2
;=0.6, r=2
;=0.7, r=2
;=0.8, r=2

time
0 50 100 150 200 250 300

di
st

an
ce

 fr
om

 e
qu

ili
br

iu
m

10 -9

10 -8

10 -7

10 -6

10 -5

10 -4

10 -3
r=1, 0=1E-4

;=0.2, T=5
;=0.3, T=5
;=0.4, T=5
;=0.6, T=5
;=0.7, T=5
;=0.8, T=5
;=0.2, T=3
;=0.3, T=3
;=0.4, T=3
;=0.6, T=3
;=0.7, T=3
;=0.8, T=3

Figure 3.10: Speed of convergence towards the stable equilibria of the δ model. The initial condition is
a small random perturbation of the steady-states.

unstable: a small perturbation on f1(t = 0) is enough to trigger the evolution towards the
stable equilibrium, which depends only on ρ.

This is illustrated in Figure 3.9: in the left panel we show the evolution towards equilib-
rium when fj(t = 0) 6= 0 for all classes (this is the stable equilibrium), while in the middle
we show the case when f1 = f2 = f3 = 0. In the rightmost panel we show a perturbation
of the previous case, where f1 takes a very small but nonzero value. It is clear that the
evolution goes at first towards the unstable equilibrium of the middle panel, but then, in
the long run, the stable equilibrium of Theorem 3.9 emerges.

Remark 3.13 (Convergence rate to equilibrium). In Figure 3.10 we study
the rate of convergence towards the stable steady-states. For the set of densities ρ ∈
{0.2, 0.3, 0.4, 0.6, 0.7, 0.8} we integrate numerically the system (3.12) for large times starting
from a small random perturbation of the stable equilibrium. In both panels, we use a
linear scale for the x-axis (time) and a logarithmic scale for the y-axis (error). The error
is computed at each step as e(t) := ‖f(t)− f∞‖2. The figure suggests that the rate of
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convergence towards the stable equilibrium depends on the density. In fact, in the left
panel we consider different values of the ratio ∆v/δv = r, in particular r = 1 (solid lines)
and r = 2 (dashed lines), and we note that the slopes of the curves corresponding to
the same value of ρ are the same. A similar behavior is observed in the right plot in
which two different ∆v are taken, ∆v = 1/5 (solid lines) and ∆v = 1/3 (dashed lines).
We can conjecture that for large enough times the distance from equilibrium behaves as
e(t) ' Ce−M(ρ)t ‖f(t = 0)− f∞‖2, where C = C(r,∆v), M(ρ) > 0.

3.4 The χ velocity model
The structure of the steady-state distribution of the δ model clearly depends on the

particular choice of the acceleration interaction made in (3.3), in which a vehicle accelerates
by jumping from its pre-interaction velocity v∗ to the new velocity v∗ + ∆v. Thus it could
seem quite natural that only velocities 0, ∆v, 2∆v, . . . , Vmax give a non zero contribution
at equilibrium.

Here we study the χ model, already introduced in Section 3.2.1 (see equation (3.4)), in
which vehicles can assume a post-interaction velocity uniformly distributed over a range of
speeds when the acceleration interaction occurs. We will show that, although this model is
more refined than the δ model, at equilibrium the essential information is already caught
by the simpler δ model.

Using the formulation (3.4) for the transition probability density A, we rewrite the gain
term in (3.2) as

G[f, f ](t, v) = η
∫
V

∫
V

[
(1− P )δmin{v∗,v∗}(v) + P

χ[v∗,min{v∗+∆v,Vmax}](v)
min {v∗ + ∆v, Vmax} − v∗

]
f∗f

∗dv∗dv∗.

Notice that the χ function can be split as

χ[v∗,min{v∗+∆v,Vmax}](v)
min {v∗ + ∆v, Vmax} − v∗

=


χ[v∗,v∗+∆v](v)

∆v , if v∗ ∈ [0, Vmax −∆v]
χ[v∗,Vmax](v)
Vmax−v∗ , if v∗ ∈ (Vmax −∆v, Vmax]

hence substituting in the above equation and evaluating explicitly the integrals, we find

G[f, f ](t, v) =η(1− P )f(t, v)
[∫ Vmax

v
f ∗dv∗ +

∫ Vmax

v
f∗dv∗

]

+ ηPρ

[
1

∆v

∫ Vmax−∆v

0
χ[v∗,v∗+∆v](v)f∗dv∗ +

∫ Vmax

Vmax−∆v

χ[v∗,Vmax](v)
Vmax − v∗

f∗dv∗
]
.

(3.16)
Observe that (3.16) differs from the gain operator of the δ model given in (3.8) only in the
terms proportional to P .
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3.4.1 Discretization of the model
To compute the steady-state solution of the χ model, we need to integrate the equations

numerically. We use the same discretization of the velocity space V introduced to discretize
the δ model and therefore the kinetic distribution is approximated as in (3.9).

Integrating the kinetic equation (3.1) over each cell, we find the system of ODEs (3.10),
but now the gain term is given by (3.16). Although in this case the integrals are laborious,
they can be computed recalling that ∆v = Vmax/T with T ∈ N (see Ansatz 3.6) and
assuming that δv is an integer submultiple of ∆v. Thus we will take n − 1 ≡ 0 mod T
and r = n−1

T
.

In order to compute explicitly the matrix elements resulting from the discretization of
the χ model we just need to compute the terms resulting from

1
η
G̃[f, f ](t, v) = Pρ

∆v

∫ Vmax−∆v

0
χ[v∗,v∗+∆v](v)f∗dv∗ + Pρ

∫ Vmax

Vmax−∆v

χ[v∗,Vmax](v)
Vmax − v∗

f∗dv∗.

When the terms above are integrated over the cells I1, we get∫
I1

1
η
G̃[f, f ](t, v)dv =Pρ4r f1. (3.17a)

For j = 2, . . . , r,

∫
Ij

1
η
G̃[f, f ](t, v)dv =Pρ

r

j−1∑
h=1

fh + Pρ

2r fj. (3.17b)

For j = r + 1,

∫
Ir+1

1
η
G̃[f, f ](t, v)dv =3Pρ

4r fj−r + Pρ

r

j−1∑
h=j−r+1

fh + Pρ

2r fj. (3.17c)

For j = r + 2, . . . , n− r − 1,

∫
Ij

1
η
G̃[f, f ](t, v)dv =Pρ2r fj−r + Pρ

r

j−1∑
h=j−r+1

fh + Pρ

2r fj. (3.17d)

For j = n− r,

∫
In−r

1
η
G̃[f, f ](t, v)dv =Pρ2r fj−r + Pρ

r

j−1∑
h=j−r+1

fh + Pρ
[ 3
8r + 1

2 +
(1

2 − r
)

log
( 2r

2r − 1

)]
fj.

(3.17e)
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For j = n− r + 1, . . . , n− 1,
∫
Ij

1
η
G̃[f, f ](t, v)dv =Pρ2r fj−r + Pρ

r

n−r−1∑
h=j−r+1

fh + Pρ
[ 1
2r + log

( 2r
2r − 1

)]
fn−r (3.17f)

+ Pρ
j−1∑

h=n−r+1
log

(
n− h+ 1

2
n− h− 1

2

)
fh

+ Pρ

[
1 +

(
j + 1

2 − n
)

log
(
n− j + 1

2
n− j − 1

2

)]
fj.

Finally, for j = n,∫
In

1
η
G̃[f, f ](t, v)dv =Pρ

[ 1
8r + 1

2 log
( 2r

2r − 1

)]
fj−r (3.17g)

+ Pρ

2

j−1∑
h=j−r+1

log
(
n− h+ 1

2
n− h− 1

2

)
fh + Pρfn. (3.17h)

We point out that, as in the case of the δ model, the ODE system can be conveniently
rewritten in vector form as

d
dtfj = η

[
fTAjχf − fTej1T

nf
]
, j = 1, . . . , n (3.18)

where f = [f1, . . . , fn]T ∈ Rn is the vector of the unknown functions, ej ∈ Rn denotes the
vector with a 1 in the j-th coordinate and 0’s elsewhere, 1T

n = [1, . . . , 1] ∈ Rn and Ajχ is
the j-th interaction matrix such that

(
Ajχ
)
hk

contains the probabilities that a candidate
vehicle with velocity in Ih interacting with a field vehicle with velocity in Ik acquires a
velocity in Ij. The matrices Ajχ can be formed by removing the underlined terms in (3.13)
with r ∈ N and adding the contributions given in (3.17).

Since model (3.18) is again of the form (2.2) and the matrices appearing in (3.18)
are again stochastic, we can apply Theorem 3.8 to guarantee the well posedness of the
associated Cauchy problem.

In Figure 3.11 we show the structure of the χ matrices: they are less sparse than the δ
matrices because of the uniformly distributed acceleration in [v∗, v∗ + ∆v], where v∗ is the
pre-interaction speed. In fact the matrix Ajχ contains non-zero elements also in the rows
from the (j−r+1)-th to the (j−1)-th, see the shaded areas in Figure 3.11, which represent
non-zero probabilities of accelerating to a speed in Ij. Since ∆v = rδv, exactly r rows fill
up. Instead, the area drawn using hatching contains the same probabilities already shown
in Figure 3.5 for the case of the δ model, with r ∈ N. Note that the elements of the matrices
depend on δv (see equations (3.17)). Thus, in contrast to the δ model, steady solutions of
the ODE system (3.18) depend on the number of velocity cells n chosen to approximate the
kinetic distribution (see (3.9)). In other words, although δv is an integer sub-multiple of
∆v, this model does not converge, as time goes to infinity, to the asymptotic distribution
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Figure 3.11: Structure of the probability matrices of the χ model with δv integer sub-multiple of ∆v.

using a coarse grid as in the δ model. However, we do recover the asymptotic distribution
in the limit δv → 0.

Finally, notice from equations (3.17) that all the elements in the rows j − r, . . . , j − 1
of the matrices Ajχ, j = 1, . . . , n, tend to 0 as 1/r when the grid is refined. In particular,
for j = 1, . . . , r, Ajχ → Ajδ. This consideration is not true for the matrices Ajχ, for j =
r + 1, . . . , n.

3.4.2 Expected speed of the δ and the χ model
Despite their differences the χ and the δ model are deeply related. This can be seen by

computing the expected output speed in each model resulting from a fixed pre-interaction
speed. We define the expected value 〈v〉 of the post-interaction velocity as

〈v〉 =
∫ Vmax

0
vA(v∗→v|v∗; ρ) dv, (v∗, v∗) ∈ V × V . (3.19)

For brevity we indicate with Aδ(v) and Aχ(v) the probability densities given in (3.3)
and (3.4) respectively. Again we assume that P1 = P2 = P as decreasing function of the
density ρ (cf. Ansatz 2.2). For the δ model we obtain

〈v〉δ =
∫ Vmax

0
v
[
(1− P ) δmin{v∗,v∗}(v) + P δmin{v∗+∆vδ,Vmax}(v)

]
dv (3.20)

= (1− P ) min{v∗, v∗}+ P

v∗ + ∆vδ, if v∗ + ∆vδ ≤ Vmax

v∗ + (Vmax − v∗) , if v∗ + ∆vδ > Vmax
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In contrast, if we consider the χ model we have

〈v〉χ =
∫ Vmax

0
v

[
(1− P ) δmin{v∗,v∗}(v) + P

χ[v∗,min{v∗+∆vχ,Vmax}](v)
min {v∗ + ∆vχ, Vmax} − v∗

]
dv

= (1− P ) min{v∗, v∗}+ P


1

∆vχ

∫ v∗+∆vχ

v∗
v dv, if v∗ + ∆vχ ≤ Vmax

1
Vmax − v∗

∫ Vmax

v∗
v dv, if v∗ + ∆vχ > Vmax

and thus

〈v〉χ = (1− P ) min{v∗, v∗}+ P


v∗ + ∆vχ

2 , if v∗ + ∆vχ ≤ Vmax

v∗ + 1
2 (Vmax − v∗), if v∗ + ∆vχ > Vmax

(3.21)

By comparing the last lines of (3.20) and (3.21), it is clear that

〈v〉χ = 〈v〉δ ∀ v∗ ≤ Vmax −∆vχ, provided ∆vδ = 1
2∆vχ. (3.22)

Remark 3.14 (Uniformly distributed deceleration). The computation of
the expected speed shows a link between the δ model and the χ model. In fact, under the
constraint ∆vδ = 1

2∆vχ, the two models provide the same expected speed. Similarly, if
we consider a braking scenario in which the candidate vehicle brakes to a speed uniformly
distributed in an interval centered on v∗, then the expected speed results to be again
(1− P )v∗.

Remark 3.15. Let us compare the Ajχ matrices (Figure 3.11) for r < j ≤ n− r with
a given ∆v and the corresponding Ajδ matrices (Figure 3.5) with ∆v

2 . For the case r ∈ N,
the isolated nonzero row of Ajδ is at j − r

2 , which corresponds to the middle of the green
shaded area in Ajχ. Moreover, for any fixed ∆v, it can be proved that, for δv → 0, the
sum of the quantities located in the shaded area of Ajχ is equal to the total contribution
provided by the

(
j − r

2

)
-th row of the δ matrices obtained with the acceleration parameter

∆v
2 . In other words, as δv → 0, the total effect of the

(
j − r

2

)
-th row of Ajδ with ∆v

2 is
spread over r+ 1 rows in the matrices Ajχ with ∆v, which are the rows shaded in green in
Figure 3.11.
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3.5 Macroscopic properties
Macroscopic acceleration In order to explain the relation of ∆v with the acceleration
of the vehicles in the model, we compute the rate of change of the macroscopic velocity:

∂u

∂t
= ∂

∂t

[
1
ρ

∫
V
vf(t, v) dv

]
= 1
ρ

∫
V
vQ[f, f ](t, v) dv

= η

ρ

[∫
V
v dv

∫
V

∫
V
A(v∗→v|v∗; ρ)f∗f ∗ dv∗dv∗ − ρ

∫
V
vf(t, v) dv

]
= η

ρ

[∫
V

∫
V
〈v〉f∗f ∗ dv∗dv∗ − ρ

∫
V
vf(t, v) dv

]
where 〈v〉 is a function of v∗ and v∗ as defined in (3.19).

In the case of the δ model, 〈v〉δ is given by (3.20) and thus

∂u

∂t
= η

ρ

[
(1− P )

∫ Vmax

0

∫ v∗

0
v∗f∗f

∗ dv∗dv∗ + (1− P )
∫ Vmax

0

∫ Vmax

v∗
v∗f∗f

∗ dv∗dv∗

+ Pρ
∫ Vmax−∆v

0
(v∗ + ∆vδ)f∗ dv∗ + Pρ

∫ Vmax

Vmax−∆v
Vmaxf∗ dv∗ − ρ

∫ Vmax

0
vf(t, v) dv

]
.

Given an initial distribution f(t = 0, v), the equation above yields the evolution of the
macroscopic acceleration in time. It is easy to study analytically this quantity at the initial
time. In particular, we compute the initial acceleration in the case in which all vehicles
are still but the density is below the value for which P = 1/2 (that is ρ/ρmax = 1/2 when
taking P = 1 − ρ/ρmax). By considering an initial distribution with all vehicles in the
lowest velocity class, i.e. of the form f(0, v) = 2ρ

δv
χI1(v), we have

∂u

∂t

∣∣∣∣∣
t=0

= ηP∆vδ
∫ Vmax−∆vδ

0
f∗ dv∗ +O(δv) = ηρP∆vδ +O(δv).

The above equation shows that the acceleration of the vehicles in the δ model depends
linearly on ∆v. Analogously, for the χ model, using (3.21), one obtains

∂u

∂t

∣∣∣∣∣
t=0

= 1
2ηρP∆vχ +O(δv)

which reinforces the remark made in (3.22) about the similarities of the χ and the δ model
when ∆vχ = 2∆vδ.

Remark 3.16 (Acceleration). Recall that (ηρ)−1 is a time. Thus ηρ∆v is the
built-in acceleration of the model, which, not surprisingly, is linked to ∆v. We can
use dimensional arguments to estimate the order of magnitude of ∆v. According to
Lebacque [53], the maximum acceleration of cars is approximately aLB = 2.5 m/s2. The
maximum speed is approximately Vmax ' 28m/s, and we expect the maximum acceleration
when P = 1. Thus ηρ∆v ' aLB.

75



3. Kinetic models for traffic flow resulting in a reduced space of
microscopic velocities

0 50 100 150
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
ac

ro
sc

op
ic

sp
ee

d

time

 

n =25, T=3

n =25, T=6

n =25, T=12
n =13, T=3

n =13, T=6

n =13, T=12

0 50 100 150
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
ac

ro
sc

op
ic

 s
pe

ed

time

 

 

T=3, η=1

T=6, η=2

T=6, η=1

T=12, η=2

T=12, η=1

T=24, η=2

Figure 3.12: Evolution of the macroscopic velocity in time. Left: comparison of different values of T and
δv. The dot-dashed lines without markers correspond to the χ model. Right: relaxation to
steady state for different combinations of η and T .

Remark 3.17. The computation of the macroscopic acceleration for the δ and the χ
model shows that they account for a bounded physical acceleration of vehicles through the
finite parameter ∆v. This fact overcomes the classical drawback of the discrete-velocity
model (2.2) introduced in [26], see the corresponding discussion in Section 3.1. Moreover,
the results of Section 3.3 show that at equilibrium the δ model is consistent with a discrete-
velocity model. since the steady state is quantized on a finite number of speeds spaced
by ∆v. Thus, the number of velocities which really care important in the lattice, namely
which allow to compute exactly the steady state using a reduced space of discrete speeds,
is controlled by a physical concept: the acceleration of vehicles. Summarizing, the δ model
is a continuous-velocity model converging to a lattice model at equilibrium for which we
now have a recipe to choose n.

The estimates above provide the trend of the macroscopic acceleration starting from
rest. For the general case, we now study the evolution of the macroscopic velocity u in
time, up to steady state. These data are shown in Fig. 3.12 and Fig. 3.13, for various
combinations of the model parameters. The results shown are obtained integrating the
equations for the δ and the χ model found in (3.12) and (3.18), respectively, with r ∈ N,
and computing at each time u(t) = 1

ρ

∫
V vf(t, v) dv.

Figure 3.12 shows a typical case in which we expect acceleration. We take ρmax =
Vmax = 1. The density is ρ = 0.15, well below the value corresponding to P = 1/2
when P = 1 − ρ, and we start with an initial distribution in which f1(t = 0) = ρ, while
fj(t = 0) = 0, for all j ≥ 2. Thus initially all vehicles are still, and, since the density is low,
they will accelerate to reach the maximum speed. The duration of the transient depends on
the product η∆v = η/T , for a fixed density, as is apparent in the right panel of the figure,
because the acceleration, i.e. the slope of the curves, is proportional to η∆v. The left panel
shows the effect of the grid discretization, i.e. the role of δv = 1/(n − 1). It is clear that
the discretization grid has no influence on the results, as expected from Theorem 3.9. The
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Figure 3.13: Evolution of the macroscopic velocity in time, for different values of T and η. Left: ρ = 0.65.
Right: ρ = 0.9.

dot-dashed lines without markers show the evolution of the macroscopic velocity obtained
with the χ model. The colour code is chosen to ensure that the curves with ∆vδ = 1

2∆vχ
are drawn in the same colour. As expected, the macroscopic velocity for the χ and the δ
model behave very similarly, provided the parameter ∆v is chosen correctly.

Next, in Figure 3.13, we show the evolution of the macroscopic velocity in two cases
when we expect deceleration for the δ model. Namely, we consider ρ = 0.65 in the left
panel and ρ = 0.9 in the right panel. The initial distribution is fn(t = 0) = ρ − ε,
f1(t = 0) = ε, and fj(t = 0) = 0, j = 2, . . . , n − 1. The value ε is introduced to ensure
convergence to the stable equilibrium, see Remark 3.12. Here ε = 0.01. In other words,
we start with a congested traffic, in which initially almost all vehicles are traveling at the
fastest speed available. Clearly, this situation is somewhat artificial, but surely we expect
the vehicles to brake. Since braking does not depend on ∆v, we expect that the relaxation
time towards equilibrium depends mainly on η and only weakly on T . This is clearly seen
in both pictures. The macroscopic speed to which the model relaxes on the other hand
will depend on ∆v and on ρ, but not on η. Note that when ρ = 0.9, in all cases considered
here, the equilibrium speed is nearly zero: in fact the traffic is extremely jammed. For
ρ = 0.65 instead, we expect that the traffic will have a residual speed, because we are well
below the value P = 1/2, but cars are not “bumper to bumper”, and this residual speed
does depend on ∆v.

Fundamental diagrams As already discussed in the previous section, the nonzero el-
ements of the matrix Ajχ can be lumped in the matrix Ajδ for n sufficiently large, with
the only exception of the elements in the rectangle r × n (see Figure 3.11) of the matrices
for j = n − r + 1, . . . , n. This is shown, for instance, in the evaluation of the expected
value of the resulting speeds due to acceleration interactions in (3.20) and (3.21), which
are comparable, except again for high speed values close to Vmax (and different from it by
at most ∆v). Thus, although the χ model is apparently more refined then the δ model,
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Figure 3.14: Fundamental diagrams resulting from the δ model (blue *-symbols) and from the χ model
with acceleration parameter ∆vδ = 1

2 ∆vχ (red circles). The dashed line is the flux of the δ
model in the limit r →∞.

we expect both models to provide similar macroscopic information, for large n. This is
usually analyzed by computing the density and the flux as moments of the asymptotic
kinetic distribution f∞(v):

ρ =
∫ Vmax

0
f∞(v) dv, (ρu) =

∫ Vmax

0
vf∞(v) dv

and by studying the characteristics of the related fundamental diagram which is obtained
plotting the flux against the density.

Notice that, for the δ model, Theorem 3.9 ensures that only few velocities, obtained with
δv = ∆v, are necessary to describe completely the exact asymptotic kinetic distribution.
We expect therefore that the macroscopic behavior of the δ model will be apparent even
on the coarse velocity grids, i.e. for r = 1.

Figure 3.14 shows the fundamental diagrams provided by the δ model (blue curves)
and the χ model (red curves), computed with ∆vχ = 2∆vδ, for two different values of
∆vδ. In the left panel, r = 1, while r = 20 on the right. The figure shows that the
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Figure 3.15: Fundamental diagrams resulting from the δ model (blue *-symbols) with T = 6 and from
the χ model with acceleration parameter ∆vχ = k∆vδ for k = 2, 3

2 ,
6
5 (red, green and cyan

circles respectively). The dashed line is the flux of the δ model in the limit r →∞.

diagram of the χ model is very similar to the diagram of the δ model when n → ∞ and
this result is in agreement with the fact that the expected output speed of the two models
is mostly the same (i.e., the same in a large range of pre-interaction speeds) when choosing
the acceleration parameter of the δ model as a half of the acceleration parameter of the χ
model. The only difference is provided by the maximum speeds which, as already noted,
are slightly different. Note that the similarity of the fundamental diagrams does not mean
that the asymptotic equilibrium functions of the χ and of the δ model converge to the
same function as n tends to∞. In Figure 3.15 we reproduce the same diagrams computed
in the top panels of Figure 3.14, adding two diagrams resulting from the χ model and
corresponding to ∆vχ = 3

2∆vδ (green data) and ∆vχ = 6
5∆vδ (cyan data). As it can be

observed, setting ∆vχ 6= 2∆vδ affects essentially the sharpness of the capacity drop of the
χ model which, in the limit n → ∞, becomes not comparable with the capacity drop of
the δ model.

Observe that the fundamental diagrams given by the δ model in both plots in each line
of Figure 3.14 use the same information. In fact, following the results of Theorem 3.9, the
macroscopic flux is given by

Fluxδ(r) =
∫ Vmax

0
vf∞δv (v)dv =

n∑
j=1

(f∞r )j
1
|Ij|

∫
Ij
v dv =

T+1∑
l=1

(f∞1 )lv(l−1)r+1

where vj denotes the center of the cell Ij and f∞r is the vector containing the equilibria
of the system (3.12) with ∆v/δv = r ∈ N. Recalling the definition of Ij, we have that
v1 = ∆v/4r, vn = Vmax − ∆v/4r and v(l−1)r+1 = (l − 1)∆v. Thus, in order to compute
the fundamental diagram of the δ model with any value of r, it is enough to compute the
equilibria f∞1 , i.e. using r = 1, and then compute the flux with the formula above. In
particular, using only f∞1 , one may also compute the fundamental diagram of the δ model
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Figure 3.16: Fundamental diagrams resulting from the δ model with acceleration parameter ∆vδ = 1
4 .

The probability P is taken as in (2.9) with α = 1 and γ = 1 (blue data), γ = 3/4 (green
data) and γ = 1/4 (cyan data). The dashed lines are the fluxes in the limit r →∞.

also in the limit r →∞ with the formula

Fluxδ(∞) =
T+1∑
l=1

(f∞1 )l(l − 1)∆v.

The dashed blue line in all panels of Figure 3.14 shows the quantity Fluxδ(∞) just defined.
Note that in the case of the χ model, for each value of r, one has instead to compute the
full equilibrium distribution with n = rT + 1 velocities.

When increasing r, we observe that the flux at ρmax approaches zero. This is because
for ρ = ρmax, (f∞1 )1 is the only non zero component at equilibrium, all vehicles travel at a
velocity in the lowest speed class I1 and the flux is therefore ∆v

4r (f∞1 )1. Similarly, in the free
phase all vehicles travel at a velocity in the highest speed class In and the flux is therefore
(Vmax − ∆v

4r )(f∞1 )T+1 = (Vmax − ∆v
4r )ρ. The free-phase flux is therefore linear in ρ and its

slope approaches Vmax when r →∞.
In Figure 3.14, we observe that both models provide a sharp decrease in the flux,

beyond the critical density, namely the value of the density marking the transition from
free to congested flow. This phenomenon is well known in traffic modeling, and it is called
capacity drop, see [88] and references therein. From Theorem 3.9 it is apparent that, for
the δ model, the critical density corresponds to a bifurcation of the equilibrium solutions.
In fact, one deduces that for P ≥ 1

2 the equilibrium distribution is f∞(v) = ρδVmax(v),
which means that all vehicles travel at maximum speed. Only when P < 1

2 the lower
speed classes begin to fill up. Thus, the physical concept of phase transition in traffic flow
theory has a rigorous mathematical counterpart in the present model. Using the law given

in (2.9) the value of ρ for which P = 1/2 is ρc :=
(

1
2

) 1
γ and then we may act on γ in

order to change the critical density. For instance, see Figure 3.16 in which we plot three
fundamental diagrams of the δ model with P as in (2.9) with α = 1 and γ = 1 (∗-markers),
γ = 3/4 (×), γ = 1/4 (�). We notice that taking different γ in the P law means that we
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Figure 3.17: Fundamental diagrams resulting from the δ model with acceleration parameter ∆vδ = 1
5

(*-symbol) and ∆vδ = 1
10 (circles). The probability P is taken as in (2.9) with α = 1 and

γ = 1 (left plot) and as in (4.38) (right plot) (see Section 4.4).

assume different types of drivers on the road (less and less aggressive as γ → 0), thus the
scattering observed in Figure 3.16 can be linked to a multi-population framework.

Another way to reproduce the scattering of data in the congested regime is to consider
different ∆v and thus models related to different accelerations. For instance, focus on the
δ model and see Figure 3.17, in which the upper branch and the lower one are referred
to the maximum and the minimum typical acceleration of a vehicle. They define a region
of fluxes in the congested phase. In fact, the hatched region is due to the variability
of the acceleration and it represents the area in which the multivalued behavior appear.
However, observe that the dispersion of the values is not comparable with the scattering
usually reproduced by experimental diagrams. Again this scattering of data can be linked
to a multi-population framework (different types of drivers on the road according to the
typical velocity jump ∆v).

Remark 3.18. Observe from Figure 3.14 that the critical density of the χ model
approaches the critical density of the δ model when n → ∞. In fact, since the matrix
A1
χ

r→∞−−−→ A1
δ , we also have that

(
f∞r,χ

)
1
r→∞−−−→

(
f∞1,δ
)

1
. More precisely, the analogous of (3.3.1)

for the χ model is
− (1− P ) f 2

1 +
(

1− 2P + P

2r

)
ρf1 = 0

and the stable equilibrium is thus0 P ≥ 2r
4r−1

ρ1−2P
1−P +O(1

r
) otherwise

In Figure 3.18 we show the fundamental diagrams of the χ model for r = 1 and r = 20,
together with a few representative fj’s at equilibrium, as functions of ρ. In the left part,
for r = 1, two phase transitions appear in the fundamental diagram (top left). Comparing
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Figure 3.18: Top: fundamental diagrams provided by the χ model with n = 4 (left) and n = 61 (right)
velocities. Bottom: equilibria of the function f1 (blue solid line), fn−1 (green dashed) and
fn (red dot-dashed) for any density in [0, 1].

with the bottom left plot, the origin of this phenomenon can be appreciated. A first
transition occurs when the density becomes large enough to force a few drivers to brake:
thus the second largest speed class In−1 starts being populated (green dashed curve), while
the fastest speed class begins to be depleted (red curve). A second transition occurs when
some vehicles enter the lowest speed class (blue curve). This latter transition is the one
that, when increasing r, moves towards the critical density ρ = 1/2, see Remark 3.18. The
first phase transition is not observable for large r, because fn−1 is related to the velocity
vn−1 → Vmax, as δv → 0, so that the transition of vehicles from In to In−1 is not enough to
determine an abrupt change in the flux.

Comparison with experimental data Figure 3.19 shows the comparisons of the results
produced by the δ model with experimental data published in [79]. In the left figure we have
tuned the critical density to reproduce the correct position of the phase transition. The
experimental data are normalized and the fundamental diagram computed by the model is
provided for all values of the density between 0 and ρmax, which corresponds to a situation
in which all vehicles are bumper-to-bumper and still. The figure on the right stems from
the observation that experimental data contain a residual movement even in the congested
phase. Thus the bumper-to-bumper situation is never actually observed. Therefore in
the figure on the right we also tune the maximum density ρ̃max actually observed, with
ρ̃max < ρmax. In this case we obtain a very good agreement with experimental data. With
the present model we do not reproduce the scattering of the data, but this can be explained
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Figure 3.19: Comparison between experimental data and the diagram resulting from the δ model, with
∆v = 1/4, P = 1 − ρ1/4. The experimental diagram is reproduced by kind permission of
Seibold et al. [79].

keeping into account a mixture of two different populations of drivers and/or vehicles, as
we have proposed in [74, 76], see Chapter 2 and Chapter 4 of this thesis.
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Chapter 4

Analysis of a multi-population
kinetic model for traffic flow

4.1 Motivation
In [76] and in Chapter 2 we introduced a Boltzmann-like kinetic model for traffic flow,

which draws inspiration from the ideas presented in [7] for macroscopic models, in order
to take into account the heterogeneous composition of the flow of vehicles on the road.
This aspect, which is rather neglected in the literature, is important to obtain a richer
description of the macroscopic behavior of traffic flow. In fact, we showed that the model
is able to recover the whole structure of the diagrams relating the macroscopic flux and
speed to the vehicle density in homogeneous space conditions and which represents a basic
tool to study traffic problems.

This chapter can be seen as a natural sequel of [76] and Chapter 2 because we revisit and
refine the model by extending the construction introduced in [75] and in Chapter 3 to the
case of traffic mixtures. We will consider more than one class of vehicles, characterized by
a few parameters accounting for the microscopic differences which allow one to distinguish
more types of vehicles. As in Chapter 2, these parameters will be the typical length and
the maximum speed, and we will introduce a kinetic distribution function for each class of
vehicles. We stress that the heterogeneity of traffic is not only described by introducing
more classes with different physical features, but also by considering two or more types of
drivers with different behavioral attributes according to the maximum velocity they intend
to keep, as in [7, 54, 61] for macroscopic models.

However, this approach differs from the model proposed in [76] and in Chapter 2 be-
cause the latter is based on a lattice of admissible microscopic speeds and the output of
an interaction depends on the number of velocities chosen in the lattice. Here, instead,
using the framework discussed in [75] and in Chapter 3 for the δ model, we will consider
continuous and bounded velocity spaces. The model will be characterized by the presence
of a parameter proportional to the actual acceleration of a vehicle in order to describe the
physical velocity jump performed by vehicles when they increase their speed as a result of
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an interaction. Clearly, this parameter may depend on the mechanical characteristics of a
vehicle, but, in order to simplify the study, we will suppose that it is fixed. This choice
preserves the quantized structure of the asymptotic functions, already observed in [75] and
in Chapter 3 for the single-population model. In fact, Theorem 4.12 in Section 4.3.2 shows
that the asymptotic kinetic distribution approaches a combination of delta functions, cen-
tered in the velocities which are proportional to the fixed parameter. However, we also
briefly analyze the case of the velocity jump depending on the class of vehicles showing
that we are able to preserve the quantization of the equilibrium solutions.

The chapter is organized as follows. In Section 4.2 we introduce the general framework
of the continuous-velocity multi-population model, then we discuss the modeling of the
probability density and we prove an indifferentiability principle. In Section 4.3 we discretize
the model in order to find the asymptotic behavior of the distribution functions. Then we
analyze the resulting system of ordinary differential equations by studying well posedness
and the asymptotic kinetic distribution for the case of two populations. In Section 4.4
we show the macroscopic diagrams of traffic provided by the model with three classes of
vehicles. We also discuss the impact that different probabilities of achieving the maximum
speed in an interaction have on the sharp capacity drop observed at the transition between
free and congested traffic flow.

4.2 A multi-population kinetic model
In this section we present the general form of a kinetic model for vehicular traffic

with a new structure accounting for the heterogeneous composition of the traffic flow
on the road. Next, we derive a simplified model based on particular choices made on
the microscopic interaction rules. This model is a generalization of the single-population
model discussed in Chapter 3 and in [75] to the case of a multi-population framework.
Therefore, unlike [76], see model (2.16), in this chapter we suppose that each class of
vehicles (population) admits a continuous space of admissible velocities and we introduce a
parameter describing the physical acceleration of each vehicle, as already done in Chapter 3.
Our approach differs from standard kinetic models in that we consider more than one
kinetic distribution function. Each one refers to a class of vehicles characterized by precise
physical features, in this case the maximum speed and the typical length of a vehicle.

Again, we will focus only on the space homogeneous case, since we are interested in
the investigation of the structure of the collision term, and of the resulting equilibrium
distributions which allow one to obtain the fundamental diagrams of traffic. From now on,
we adopt the compact notation already introduced in Section 2.4.1, which makes use of an
index p, to label various quantities referred to the different classes of vehicles. Thus, let

fp = fp(t, v) : R+ × Vp → R+

be the kinetic distribution function of the p-th class of vehicles, then fp(t, v)dv gives the
number of vehicles belonging to the p-class with velocity in [v, v+ dv] at time t. The space
Vp = [0, V p

max] is the domain of the microscopic speeds related to the p-class, where V p
max
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is the maximum speed which can be reached by the p-vehicles. In this framework V p
max

will depend on the mechanical characteristics of the vehicles, or on the type of drivers,
according to the maximum velocity they intend to keep in free road conditions. Thus, the
different maximum speeds allow one to model a first microscopic feature which identifies
a class of vehicles. Another difference is introduced by considering the typical length lp of
vehicles which will be used later to define the concept of the total space occupied on the
road.

As usual, macroscopic quantities are obtained as moments of the distribution functions
fp with respect to the velocity v:

ρp(t) =
∫
Vp
fp(t, v)dv, qp(t) =

∫
Vp
vfp(t, v)dv, up(t) = qp(t)

ρp(t) (4.1)

where ρp is the density, i.e. the number of vehicles of the p-class per unit length (typically,
kilometers), qp and up are the macroscopic flux of vehicles and the mean speed of the p-th
class, respectively.

Here we again consider a Boltzmann-type kinetic model for vehicular traffic, in which
the relaxation to equilibrium is due to binary interactions. In the homogeneous case, we
model the evolution of the fp’s in time by means of the following system of equations:

∂tf
p(t, v) = Qp [fp, (fp, fq)] (t, v), ∀ p (4.2)

where Qp [fp, (fp, fq)] (t, v) is the collision operator which accounts for the change of fp

in time due to the microscopic interactions among vehicles. Clearly, a multi-population
model has to consider also the interactions taking place between p- and q-vehicles, where q
represents all classes of vehicles which are not p. For this reason, and following the approach
already used in Section 2.4.1 and for gas mixtures in [3, 13, 33, 34], Qp can be naturally
thought of as a sum of two or more collision operators, one describing the interactions
among vehicles belonging to the same class (self-interactions) and the other ones describing
the interactions among vehicles belonging to different classes (cross-interactions), so that

Qp [fp, (fp, fq)] (t, v) = Qpp [fp, fp] (t, v)︸ ︷︷ ︸
self-interactions

+
∑

q∈¬p
Qpq [fp, fq] (t, v)︸ ︷︷ ︸

cross-interactions

For mass conservation to hold the right-hand side of the above expression has to vanish
when it is integrated over the space of admissible speeds of the p-th class, and this is
verified e.g. if we assume that the collision terms satisfy∫

Vp
Qpp[fp, fp](t, v)dv =

∫
Vp
Qpq[fp, fq](t, v)dv = 0,

for all q ∈ ¬p. In fact, this ensures that, in the space homogeneous case, the density
remains constant:

d
dtρ

p(t) = ∂t

∫
Vp
fp(t, v)dv =

∫
Vp
Qp [fp, (fp, fq)] (t, v)dv = 0.
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4. Analysis of a multi-population kinetic model for traffic flow

Following the same logic underlying the construction of a classical Boltzmann-like ki-
netic model, each collision operator is written as a balance of a gain (Gpp or Gpq) and a
loss term that model statistically the interactions which lead to get or to loose the speed
v ∈ Vp:

Qpp[fp, fp](t, v) =
∫
Vp

∫
Vp
ηp(v∗, v∗)Ap(v∗ → v|v∗; s)fp(t, v∗)fp(t, v∗)dv∗dv∗︸ ︷︷ ︸

Gpp[fp,fp](t,v)

(4.3a)

− fp(t, v)
∫
Vp
ηp(v∗, v∗)fp(t, v∗)dv∗,

Qpq[fp, fq](t, v) =
∫
Vp

∫
Vq
ηpq(v∗, v∗)Apq(v∗ → v|v∗; s)fp(t, v∗)fq(t, v∗)dv∗dv∗︸ ︷︷ ︸

Gpq[fp,fq](t,v)

(4.3b)

− fp(t, v)
∫
Vq
ηpq(v∗, v∗)fq(t, v∗)dv∗.

Throughout the chapter, following the notation used in Chapter 3, we will denote by
v∗ ∈ Vp the pre-interaction velocity of the p-vehicle which is likely to change speed after an
interaction. Conversely, v∗ ∈ Vp or v∗ ∈ Vq identifies the velocity of other p- or q-vehicles
which induce the gain or loss of the speed v ∈ Vp. In order to shorten formulas, we will
use the notation introduced in Section 3.2, so that fp(t, v∗) = fp

∗ , fp(t, v∗) = fp∗, ∀ p, and
similarly for fq

∗ , fq∗, ∀ q ∈ ¬p.
In (4.3), ηp(v∗, v∗) and ηpq(v∗, v∗) are the interaction rates which model the frequency

of self- and cross-interactions respectively. Since in [76] and in Chapter 2 we found that a
constant interaction rate is already sufficient to account for many aspects of the complexity
of traffic, we will not consider more refined choices for the interaction rates, e.g. dependent
on the relative speed of interacting vehicles. Moreover, observe that, in the space homoge-
neous case, a constant interaction rates affect only the relaxation time towards equilibrium.
Thus, in this chapter we will set again ηp(v∗, v∗) = ηp and ηpq(v∗, v∗) = ηpq.

Finally, Ap(v∗ → v|v∗; s) and Apq(v∗ → v|v∗; s) are the probability densities of gaining
the speed v ∈ Vp in the case of self- and cross-interactions, respectively. More precisely,
Ap(v∗ → v|v∗; s) (Apq(v∗ → v|v∗; s), resp.) gives the probability that a p-vehicle modifies
its pre-interaction speed v∗ ∈ Vp in the speed v ∈ Vp when it interacts with a p-vehicle
(q-vehicle, resp.) traveling at the speed v∗ ∈ Vp (v∗ ∈ Vq, resp.).

We will suppose that these probabilities depend also on the macroscopic traffic condi-
tions (local road congestion) through the fraction of occupied space on the road:

0 ≤ s =
∑

p
lpρp ≤ 1. (4.4)

Notice that s was already introduced in [7] for a multi-population macroscopic model and
it was also used in [76] and in Section 2.4.1 for a two-population kinetic model based on a
discrete-velocity framework. The quantity ρp appearing in (4.4) is defined in (4.1). We will
assume that ρp ∈ [0, ρp

max] where ρp
max is the maximum density of p-vehicles chosen as 1

lp ,
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i.e. as the maximum number of vehicles per unit length in bumper-to-bumper conditions
when ρq = 0, ∀ q ∈ ¬p. Therefore, s can be rewritten as

0 ≤ s =
∑

p

ρp

ρp
max
≤ 1.

From the last expression it is clear that the parameter s generalizes the term ρ
ρmax

appearing
in the case of single-population models, see [37, 48, 73].

Following the Ansatz 3.1 and since Ap(v∗ → v|v∗; s) and Apq(v∗ → v|v∗; s) are proba-
bility densities, they fulfill the properties:

Ap(v∗ → v|v∗; s) ≥ 0,
∫
Vp
Ap(v∗ → v|v∗; s)dv = 1, for v∗, v∗, v ∈ Vp, s ∈ [0, 1]

Apq(v∗ → v|v∗; s) ≥ 0,
∫
Vp
Apq(v∗ → v|v∗; s)dv = 1, for v∗, v ∈ Vp, v∗ ∈ Vq, s ∈ [0, 1].

(4.5)

Remark 4.1. All transition probability densities Ap(v∗ → v|v∗; s) and Apq(v∗ →
v|v∗; s) satisfying properties (4.5) guarantee mass conservation. In fact, by integrating
over the velocity space Vp we obtain∫
Vp
Qpp[fp, fp](t, v)dv =

∫
Vp

∫
Vp
fp
∗ f

p∗
(∫
Vp
Ap(v∗ → v|v∗; s)dv

)
dv∗dv∗−

∫
Vp
fpdv

∫
Vp
fp∗dv∗ = 0.

Analogously for the cross-interaction operators we have
∫
Vp Qpq[fp, fq](t, v)dv = 0, for all

q ∈ ¬p.

Remark 4.2. Since the mass of each population is conserved, also s given in (4.4) is
conserved. In particular, it satisfies the prescribed bounds if the fp’s are properly chosen
at the initial time.

4.2.1 Choice of the probability densities
As in any Boltzmann-like kinetic traffic model, the introduction of a probability density

allows one to assign a post-interaction speed taking into account the stochasticity of the
drivers’ behavior. Therefore, the construction of Ap(v∗ → v|v∗; s) and Apq(v∗ → v|v∗; s),
∀ p, q ∈ ¬p, is at the core of the model we propose.

We will suppose that all types of vehicles react in the same way to the parameter
s, accounting for the state of congestion of the road, and to all field classes of vehicles.
Clearly, it would also be possible to consider different reactive behaviors for different classes
of vehicles. However, this choice is coherent with the experience and, as we will see later
in Section 4.4, this simpler choice results in a realistic macroscopic behavior.

Precisely, we consider the same very small set of rules described in Section 3.2.1 and
introduced in [75]. In particular, for the post-interaction speed due to acceleration we
assume that the output velocity v is obtained by accelerating instantaneously from v∗
to v∗ + ∆vp, unless the resulting speed is larger than V p

max, namely the new speed is
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v∗ ≤ v∗

v∗ > v∗

Vp

Vp

V p
max

V p
max

v∗ ≤ v∗

v∗ > v∗

Vp

Vq

V q
max

V p
max

v∗ ≤ v∗

v∗ > v∗

Vp

Vq

V q
max

V p
max

Figure 4.1: The domain of the probability density Ap(v∗ → v|v∗; s) (left), the domains of the probability
densities Apq(v∗ → v|v∗; s) in the case Vp ⊃ Vq (center) and Vp ⊂ Vq (right).

min {v∗ + ∆vp, V p
max}. This choice corresponds to the case of the quantized acceleration

(or δ model) introduced in [75] and in equation (3.3) for a single-population model. Clearly,
other choices are possible, in particular the case of a uniformly distributed acceleration.
However, in Chapter 3 we proved that although a model with such an acceleration is more
refined, at equilibrium the essential information is caught by the simpler δ model. For this
reason, here we will not investigate other models.

Considering all possible outcomes, the resulting probability distribution accounting for
self-interactions is

Ap(v∗ → v|v∗; s) =


(1− P1(s)) δv∗(v) + P1(s) δmin{v∗+∆vp,V p

max}(v), if v∗ ≤ v∗

(1− P2(s)) δv∗(v) + P2(s) δmin{v∗+∆vp,V p
max}(v), if v∗ > v∗.

(4.6)

Since we have assumed that all classes of vehicles react in the same way to the parameter
s and to different interacting populations, the probability densities describing the cross-
interactions differ from Ap(v∗ → v|v∗; s) only in their domain. In fact, Ap(v∗ → v|v∗; s) is
defined for (v∗, v∗) ∈ Vp × Vp and v ∈ Vp, while Apq(v∗ → v|v∗; s) for (v∗, v∗) ∈ Vp × Vq

and v ∈ Vp, see Figure 4.1.
Note that the modeling (4.6) of Ap(v∗ → v|v∗; s) and Apq(v∗ → v|v∗; s), ∀ p, q ∈ ¬p,

preserves all the good properties of the model introduced in Chapter 3. In particular, in
contrast to [76] in which the velocity jump ∆vp is chosen as the distance between two
adjacent discrete velocities, namely ∆vp depends on the number of elements in the speed
lattice, in this chapter, instead, ∆vp is a physical parameter that represents the ability of
a class of vehicles to change its pre-interaction speed v∗. With this choice, ∆vp does not
depend on the discretization of the velocity space Vp and the maximum acceleration is
bounded, as in [53] and [75]. In contrast, deceleration can be larger than ∆vp, and this
fact again reflects the concept of traffic hysteresis in [88] and references therein.

Following the choice made in Section 3.2.1, the probabilities P1 and P2 are taken as
P = P1 = P2 and P is a function of the fraction of occupied space s only as in Section 2.3.2.
In general P should be a decreasing function of s, see Section 2.3.2 and also [36] or [78].
Usually, P will be taken as in (2.9) but in Section 4.4 we will analyze a more complex
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choice of P and its impact on the capacity drop. In more sophisticated models, one may
also choose P as a function of the relative velocity of the interacting vehicles, but we will
not explore this possibility in the present work.

Remark 4.3. As noticed in Section 3.2.1, in [48] Klar and Wegener assume that the
velocity after an acceleration is uniformly distributed over a range of speeds between v∗ and
v∗+α(Vmax− v∗), where α is supposed to depend on the local density. Thus, they suppose
that the output speed resulting from the acceleration rule depends on the free space on the
road, in other words they consider the velocity jump as function of s. Instead, here ∆vp

(or simply ∆v in the single-population model introduced in Chapter 3) is fixed while P
is function of s, so that when the road becomes congested the probability of accelerating
decreases.

4.3 Analysis of the model
In this section, first we rewrite explicitly the model using the expression (4.6) for

Ap(v∗ → v|v∗; s) and Apq(v∗ → v|v∗; s). Next, we discretize it in order to analyze later
numerically the asymptotic traffic behavior, see Section 4.4. Furthermore, we study the
well-posedness (existence, uniqueness, and continuous dependence of the solution on initial
data) of the discretized model and we characterize explicitly the asymptotic distributions
(fp)∞ of the discrete-velocity model.

The gain term of the collision operator (4.3a) describing self-interactions can be easily
rewritten in the following way by exploiting the explicit expression of Ap(v∗ → v|v∗; s)
given in (4.6) and without distinguishing the cases v∗ ≤ v∗ and v∗ > v∗:

Gpp[fp, fp](t, v) = ηp
∫ V p

max

0

∫ V p
max

0

[
(1− P )δmin{v∗,v∗}(v) + Pδmin{v∗+∆vp,V p

max}(v)
]
fp
∗ f

p∗dv∗dv∗.

Observe that the Dirac delta function at v = min {v∗ + ∆vp, V p
max} can be split as

δmin{v∗+∆vp,V p
max}(v) =

δv∗+∆vp(v), if v∗ ∈ [0, V p
max −∆vp]

δV p
max(v), if v∗ ∈ (Vmax −∆vp, V p

max]
,

and since Qp is defined on Vp × Vp, then Gpp[fp, fp](t, v) corresponds to the gain term of
the single-population model. Thus, recalling the computations in [75] and in Section 3.3.1,
Gpp[fp, fp](t, v) can be written as

Gpp[fp, fp](t, v) =ηp(1− P )fp
[∫ V p

max

v
fp∗dv∗ +

∫ V p
max

v
fp
∗dv∗

]

+ ηpPρp
[
fp(t, v −∆vp)H∆vp(v) + δV p

max(v)
∫ V p

max

V p
max−∆vp

fp
∗dv∗

] (4.7)

where Hα(v) is the Heaviside step function defined as Hα(v) := d
dv max{0, v − α}, α ∈ R.

Notice that the first two integrals on the right-hand side actually coincide, in the space
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homogeneous case. However, we kept them separate to stress the fact that they come from
different contributions.

Conversely, the gain term resulting from the collision operators (4.3b) describing the
cross-interactions has to be treated differently because Qpq is defined on Vp × Vq and we
have to distinguish V p

max > V q
max (i.e. Vp ⊃ Vq) from V p

max < V q
max (i.e. Vp ⊂ Vq), see

Figure 4.1. First of all we rewrite the generic gain term Gpq[fp, fq](t, v) as

Gpq[fp, fq](t, v) = ηpq
∫ V p

max

0

∫ V q
max

0

[
(1− P )δmin{v∗,v∗}(v) + Pδmin{v∗+∆vp,V p

max}(v)
]
fp
∗ f

q∗dv∗dv∗.
(4.8)

Computing explicitly the terms appearing in Gpq[fp, fq](t, v), we obtain two different ex-
pressions. If V p

max > V q
max:

Gpq[fp, fq](t, v) =ηpq(1− P )fpχ[0,V q
max](v)

∫ V q
max

v
fq∗dv∗ + ηpq(1− P )fq

∫ V p
max

v
fp
∗dv∗

+ ηpqPρq
[
fp(t, v −∆vp)χ∆vp(v) + δV p

max(v)
∫ V p

max

V p
max−∆vp

fp
∗dv∗

]
,

(4.9)
while if V p

max < V q
max:

Gpq[fp, fq](t, v) =ηpq(1− P )fp
∫ V q

max

v
fq∗dv∗ + ηpq(1− P )fqχ[0,V p

max](v)
∫ V p

max

v
fp
∗dv∗

+ ηpqPρq
[
fp(t, v −∆vp)H∆vp(v) + δV p

max(v)
∫ V p

max

V p
max−∆vp

fp
∗dv∗

]
.

(4.10)
Using the expressions (4.7), (4.9) and (4.10) of the gain term, the model is then globally

defined and it can be discretized as we do in the following subsection.
Finally, the following theorem states that when all the classes of vehicles composing

the mixture of traffic have the same microscopic characteristics then the multi-population
model is consistent with the equation defining the single-population model introduced
in [75] and in Chapter 3. This property is known in the kinetic theory of gas mixtures as
indifferentiability principle, see e.g. [3], and thus Theorem 2.4 proved in Section 2.4.1 for
the lattice multi-population model holds also at the continuous level.

Theorem 4.4 (Indifferentiability principle). – Assume that the types of vehi-
cles have the same physical and kinematic characteristics, i.e.

lp := l, V p
max := Vmax, ∆vp := ∆v, ∀ p.

Let ηp = ηpq =: η be the interaction rate. Then the total distribution function f : R+×V →
R+, defined as

f(t, v) =
∑

p
fp(t, v) (4.11)

obeys, at each time, the evolution equation of the single-population model introduced in [75]
and in Chapter 3.
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Figure 4.2: Discretization of velocity spaces.

Proof. If the populations have the same microscopic features then for any fixed p in the set
of all classes of vehicles the velocity spaces are such that Vp = Vq := V , ∀ q ∈ ¬p, and the
gain terms (4.7)-(4.8) are the same because now the probability densities Ap(v∗ → v|v∗; s)
and Apq(v∗ → v|v∗; s) are defined on the same velocity space V×V . Then, we have Ap(v∗ →
v|v∗; s) = Apq(v∗ → v|v∗; s) := A(v∗ → v|v∗; s) and moreover s = ∑

p
ρp

ρp
max

=
∑

p ρ
p

ρmax
= ρ

ρmax
.

In addition to that, the interaction rates are the same because the populations are identical,
hence finally the multi-population model writes as

∂tf
p = Qpp[fp, fp](t, v) +

∑
q∈¬p

Qpq[fp, fq](t, v)

= η
∫
V

∫
V
A(v∗ → v|v∗; s)fp

∗
∑

j=p,q∈¬p
f j∗dv∗dv∗ − ηfp

∫
V

∑
j=p,q∈¬p

f j∗dv∗.

Summing this equation over p and using the definition (4.11), we obtain

∂tf(t, v) = η
∫
V

∫
V
A(v∗ → v|v∗; s)f(t, v∗)f(t, v∗)dv∗dv∗ − ηf(t, v)

∫
V
f(t, v∗)dv∗

which represents the equation for the single-population model given in [75] and in Chap-
ter 3, see equation (3.2). �

4.3.1 Discretization of the model
In order to address the qualitative properties of the model, we consider a discretization

of the velocity spaces. The study becomes simpler with the following assumptions:

Ansatz 4.5. The velocity jump ∆vp is a fixed parameter and ∆vp = ∆v, ∀ p.

Ansatz 4.6. The fixed parameter ∆v is such that ∆v = V p
max/T

p, with T p ∈ N, ∀ p.

Ansatz 4.7. Let δv be the numerical parameter of the velocity space discretization.
Then, we take δv = ∆v

r
.
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Notice that Ansatz 4.5 is not as restrictive as it appears. Since ∆vp represents the
instantaneous velocity jump of a vehicle as a result of the acceleration interaction, it
might be thought of as another microscopic feature characterizing the classes of vehicles.
Then we may suppose that the populations do not differ in the jump of velocity but we
can characterize them by assuming that the jump of velocity is performed with different
microscopic accelerations ap. As proved in [75] and in Chapter 3 in the case of a single-
population model, the acceleration of the vehicles depends on the product of ∆v and the
interaction rate, thus in order to account for different accelerations in each class we could
act on the interaction rates ηp and ηpq, without modifying ∆v. However, this is relevant
only in the spatially inhomogeneous model because in the framework analyzed in this work
the interaction rates influence only the rate of convergence towards equilibrium solutions.
The equilibrium solutions themselves do not depend on the interaction rates.

Ansatz 4.6 implies that

|V p
max − V q

max| = mpq∆v, ∀ p, q ∈ ¬p, mpq ∈ N,

i.e. the distance between the maximum velocities of the populations is a multiple of ∆v,
see the left panel of Figure 4.2.

Finally, observe that Ansatz 4.7 means that ∆v corresponds to an integer number of
intervals in the velocity discretization, see the center panel of Figure 4.2. Thus r = np−1

T p ∈ N
depends on the number of grid points np. This assumption is justified by the investigations
provided in Section 3.3.1 in which we show that the choice r ∈ N is sufficient, and thus not
restrictive, in order to compute the exact equilibrium solutions numerically. In this chapter,
we will show the computation of the equilibrium solutions for the case of two populations
showing that they are quantized reproducing the structure of the single-population δ model
(see Theorem 4.12 in Section 4.3.2). In the general case we can proceed numerically using
the fact that the asymptotic state can be recovered exactly with a reduced number of
discrete speeds.

We define the (p dependent) velocity cells Ip
j = [(j − 3

2)δv, (j − 1
2)δv] ∩ [0, V p

max], ∀ p
and for j = 1, . . . , np = V p

max
δv

+ 1. Note that all cells have amplitude δv except Ip
1 and Ip

np

which have amplitude δv/2. The velocity grid nodes, located at the center of each cell, are
vp

1 = δv/4, vp
np = V p

max − δv/4, and v
p
j = (j − 1)δv for j = 2, . . . , np − 1. This choice was

already used in [75], and in Sections 3.3.1 - 3.4.1, since it is convenient for computations
because all grids with r > 1 contain all the points of the coarser mesh with r = 1 (except
the first and the last point). See the right panel of Figure 4.2 for the discretization of
Vp × Vq.

In order to discretize the model, we approximate each velocity distribution with the
piecewise constant function

fp(t, v) ≈ fp
δv(t, v) =

np∑
j=1

fp
j (t)

χIp
j
(v)∣∣∣Ip
j

∣∣∣ (4.12)

where fp
j : R+ → [0, ρp] represents the number of p-vehicles traveling with velocity v ∈ Ip

j .
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By integrating the kinetic equation (4.2) over the cells Ip
j we obtain the following system

of ordinary differential equations:

dfp
j (t)
dt =Qp

j [f
p
δv, (f

p
δv, f

q
δv)](t)

=
∫
Ip
j

Qpp[fp
δv, f

p
δv](t, v)dv︸ ︷︷ ︸

Qpp
j [fp

δv
,fp
δv

](t)

+
∫
Ip
j

Qpq[fp
δv, f

q
δv](t, v)dv︸ ︷︷ ︸

Qpq
j [fp

δv
,fq
δv

](t)

, j = 1, . . . , np, ∀ p (4.13)

whose initial condition fp
1 (0), . . . , fp

np(0) are such that

np∑
j=1

fp
j (0) =

∫
Vp
fp(t = 0, v)dv = ρp, ∀ p, ρp ∈ [0, ρp

max]

and ρp is the initial density, which remains constant in the spatially homogeneous case, see
Remark 4.1.

The terms Qpp
j [fp

δv, f
p
δv](t) and Qpq

j [fp
δv, f

q
δv](t) can be explicitly written out. Starting

from the self-collision term Qpp
j and recalling the computations in [75] and in Section 3.3.1

for the single-population model, we obtain

1
ηpQ

pp
j [fp

δv, f
p
δv](t) =(1− P )fpjfp

j + (1− P )fp
j

np∑
k=j+1

fpk + (1− P )fpj
np∑

h=j+1
fp
h (4.14a)

− fp
j

np∑
k=1

fpk, for j = 1, . . . , r

1
ηpQ

pp
j [fp

δv, f
p
δv](t) =(1− P )fpjfp

j + (1− P )fp
j

np∑
k=j+1

fpk + (1− P )fpj
np∑

h=j+1
fp
h (4.14b)

+ Pfp
j−r

np∑
k=1

fpk − fp
j

np∑
k=1

fpk, for j = r + 1, . . . , np − 1

1
ηpQ

pp
np [fp

δv, f
p
δv](t) =(1− P )fpnp

fp
np + P

np∑
h=np−r

fp
h

np∑
k=1

fpk − fp
np

np∑
k=1

fpk. (4.14c)

For the cross-collision terms, we distinguish the two cases described in (4.9) and (4.10).
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Therefore, let Vp ⊂ Vq, we obtain

1
ηpqQ

pq
j [fp

δv, f
q
δv](t) =(1− P )fqjfp

j + (1− P )fp
j

nq∑
k=j+1

fqk + (1− P )fqj
np∑

h=j+1
fp
h (4.15a)

− fp
j

nq∑
k=1

fqk, for j = 1, . . . , r

1
ηpqQ

pq
j [fp

δv, f
q
δv](t) =(1− P )fqjfp

j + (1− P )fp
j

nq∑
k=j+1

fqk + (1− P )fqj
np∑

h=j+1
fp
h (4.15b)

+ Pfp
j−r

nq∑
k=1

fqk − fp
j

nq∑
k=1

fqk, for j = r + 1, . . . , np − 1

1
ηpqQ

pq
np [fp

δv, f
q
δv](t) =(1− P )fp

np

nq∑
k=np

fqk + P
np∑

h=np−r
fp
h

nq∑
k=1

fqk − fp
np

nq∑
k=1

fqk. (4.15c)

Finally, let Vp ⊃ Vq, we obtain

1
ηpqQ

pq
j [fp

δv, f
q
δv](t) = (1− P )fqjfp

j + (1− P )fp
j

nq∑
k=j+1

fqk + (1− P )fqj
np∑

h=j+1
fp
h (4.16a)

− fp
j

nq∑
k=1

fqk, for j = 1, . . . , r

1
ηpqQ

pq
j [fp

δv, f
q
δv](t) = (1− P )fqjfp

j + (1− P )fp
j

nq∑
k=j+1

fqk + (1− P )fqj
np∑

h=j+1
fp
h (4.16b)

+ Pfp
j−r

nq∑
k=1

fqk − fp
j

nq∑
k=1

fqk, for j = r + 1, . . . , nq − 1

1
ηpqQ

pq
nq [fp

δv, f
q
δv](t) = (1− P )fqnq

fp
nq + (1− P )fqnq

np∑
h=nq+1

fp
h + Pfp

nq−r

nq∑
k=1

fqk (4.16c)

− fp
nq

nq∑
k=1

fqk, (4.16d)

1
ηpqQ

pq
j [fp

δv, f
q
δv](t) = Pfp

j−r

nq∑
k=1

fqk − fp
j

nq∑
k=1

fqk, for j = nq + 1, . . . , np − 1 (4.16e)

1
ηpqQ

pq
np [fp

δv, f
q
δv](t) = P

np∑
h=np−r

fp
h

nq∑
k=1

fqk − fp
np

nq∑
k=1

fqk. (4.16f)

In the above formulas, the kinetic distribution functions of candidate and field vehi-
cles are distinguished by the position of the index of the components: bottom-right for
candidate vehicles (such as e.g. fp

h), top-right for field vehicles (such as e.g. fpk or fqk).
Once the right-hand side of (4.13) is computed, then the ODE system can be easily

rewritten by means of the matrices Ap,j and Bpq,j, for j = 1, . . . , np, which are the so-called
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self- and cross-interaction matrices, respectively. Then, the multi-population model writes
finally as

dfp
j (t)
dt =ηp

np∑
h,k=1

Ap,j
hk f

p
hf

pk +
∑

q∈¬p
ηpq

np∑
h=1

nq∑
k=1

Bpq,j
hk fp

hf
qk

− fp
j

ηp
np∑
k=1

fpk +
∑

q∈¬p
ηpq

nq∑
k=1

fqk

 , j = 1, . . . , np,∀ p.
(4.17)

The matrices Ap,j and Bpq,j are defined as

Ap,j
hk = Prob

(
v∗ ∈ Ip

h → v ∈ Ip
j |v∗ ∈ I

p
k

)
, Bpq,j

hk = Prob
(
v∗ ∈ Ip

h → v ∈ Ip
j |v∗ ∈ I

q
k

)
,

namely they contain in the position (h, k) the probability that the candidate vehicle belong-
ing to the p-th class and with velocity in Ip

h will acquire a velocity in Ip
j when it interacts

with a field vehicle traveling at a velocity in Ip
k , if the p-vehicles play also the role of field

class, or in Iq
k otherwise.

In Figure 4.3a we show the sparse structure of the self-interaction matrices Ap,j ∈
Rnp×np , for j = 1, . . . , np. The cross-interaction matrices Bpq,j for the case Vp ⊃ Vq have
the same structure as the Ap,j’s, apart from being rectangular of dimensions np×nq, with
np > nq. Differences however arise for j ≥ nq, see Figure 4.3b in which for simplicity we
have assumed that nq + r = np (i.e. V p

max − V q
max = ∆v). Finally, the cross-interaction

matrices Bpq,j for the case Vp ⊂ Vq are np × nq, with np < nq. They can in turn be easily
derived from the Ap,j’s, the only different case being the one for j = np, see Figure 4.3c in
which for simplicity we have assumed that nq = np + r (i.e. V q

max − V p
max = ∆v).

In all these figures, the nonzero elements are shaded with different hatchings, corre-
sponding to the different values of the elements, as indicated in the panels in which they
appear for the first time.

As it can be checked, both the self- and the cross-interaction matrices are stochastic
with respect to the index j, i.e. all their elements are positive and bounded above by 1
and

np∑
j=1

Ap,j = Onp×np ,
np∑
j=1

Bpq,j = Onp×nq , ∀ p, q ∈ ¬p.

where ON×M is the matrix of size N ×M with the value 1 in each entry. These properties
come from (4.5), and they guarantee mass conservation.

4.3.2 Qualitative analysis
Now we study the well-posedness of the discrete-velocity model (4.17) and for the sake

of simplicity we work with two populations only, but the analysis can be generalized to
multiple populations. We show that the model has a unique solution, which remains
positive and bounded in time, and finally we compute the analytical equilibria.
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r

Ap,j for 1 ≤ j ≤ r

j

j

1−P

r

Ap,j for r < j < np

j

j − r

j

P

r

Ap,j for j = np

np − r

np

np

(a) Self-interaction matrices Ap,j , j = 1, . . . , np.

r

Bpq,j for j = nq

nq

nq

nq − r

r

Bpq,j for nq < j < nq + r

j − r

r

Bpq,j for j = nq + r = np

np

nq

nq

(b) Cross-interaction matrices Bpq,j , j ≥ nq, for the case Vp ⊃ Vq.

r

Bpq,j for j = np

np − r

np

np

nq

(c) Cross-interaction matrices Bpq,j , j =
np, for the case Vp ⊂ Vq.

Figure 4.3: General structure of the interaction matrices.
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To this end, we consider the Cauchy problem associated to the ODE system (4.17)
with initial data fp

j (0), j = 1, . . . , np, ∀ p. Since in spatially homogeneous conditions the
density is constant in time, the generic equation of the Cauchy problem can be written as

dfp
j (t)
dt = ηp

np∑
h,k=1

Ap,j
hk f

p
hf

p
k +

∑
q∈¬p

ηpq
np∑
h=1

nq∑
k=1

Bpq,j
hk fp

hf
q
k −Rpfp

j , j = 1, . . . , np,∀ p (4.18)

where Rp := ηpρp + ∑
q∈¬p η

pqρq. Notice that in (4.18) we do not use the upper index to
distinguish the distributions, but the index h is referred to the candidate vehicle distribu-
tion, while the index k to the field vehicle distributions. We assume that each density ρp

is normalized with respect to ρp
max so that

0 ≤ fp
j (0) ≤ ρp ≤ 1, j = 1, . . . , np,∀ p

0 ≤
np∑
j=1

fp
j (0) = ρp ≤ 1, ∀ p.

(4.19)

In the following, we propose two different proofs of the well posedness of the Cauchy
problem (4.18) associated to the model (4.17). The first one (Theorem 4.9) uses the
Fixed Point Theorem. Instead, the second one (Theorem 4.10) uses the theorem on global
existence and uniqueness of solutions to first order ODE systems with sublinear growth.

Starting from the first approach it is suitable to rewrite the Cauchy problem (4.18) in its
integral formulation. To this end, we define F (t) := tRp and multiplying the equation (4.18)
by eF (t) and integrating in time we obtain its integral formulation:

fp
j (t) = e−tR

p
fp
j (0)+

∫ t

0
e(τ−t)Rp

ηp
np∑

h,k=1
Ap,j
hk f

p
hf

p
k +

∑
q∈¬p

ηpq
np∑
h=1

nq∑
k=1

Bpq,j
hk fp

hf
q
k

 dτ, j = 1, . . . , np,∀ p.

In order to prove the existence and uniqueness of the solution of the Cauchy problem,
we rewrite it in explicit formulation assuming that the two populations are labeled one
with p and the other one with q:

fp
j (t) = e−tR

p
fp
j (0) +

∫ t

0
e(τ−t)Rp

 np∑
h,k=1

ηpAp,j
hk f

p
hf

p
k +

np∑
h=1

nq∑
k=1

ηpqBpq,j
hk fp

hf
q
k

 dτ , j = 1, . . . , np

fq
j (t) = e−tR

q
fq
j (0) +

∫ t

0
e(τ−t)Rq

 nq∑
h,k=1

ηqAq,j
hk f

q
hf

q
k +

nq∑
h=1

np∑
k=1

ηqpBqp,j
hk fq

hf
p
k

 dτ , j = 1, . . . , nq

(4.20)
Let

X = C
(
[0, Tmax]; Rnp)× C ([0, Tmax]; Rnq)

be the space of vector-valued continuous functions on the interval [0, Tmax] and let (u,v)
be a generic element of X. Let fp = (fp

1 , . . . , f
p
np) and fq = (fq

1 , . . . , f
q
nq) be the solution of
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the Cauchy problem. We define

B =

(u,v) ∈ X : 0 ≤ uj(t) ≤ ρp, 0 ≤ vj(t) ≤ ρq,
np∑
j=1

uj(t) = ρp,
nq∑
j=1

vj(t) = ρq


the subset of X such that ρp and ρq are fixed constants, the same as in (4.18), then the
elements of B have the properties we require for the solution (fp, fq) of (4.20).

From now on, we will endow Rnp and Rnq with the 1-norm. While on the spaces
C
(
[0, Tmax]; Rd

)
, for d ∈ N, and on the space X we use the norms defined as follows.

Definition 4.8. Let u(t) ∈ Rd be a time dependent vector with d ∈ N real compo-
nents. Then on C

(
[0, Tmax]; Rd

)
the uniform norm of the vector u(t) is

‖u‖∞ = sup
t∈[0,Tmax]

‖u(t)‖1 = sup
t∈[0,Tmax]

d∑
j=1
|uj(t)| .

Instead, on the space X the following norm is defined:

‖(u,v)‖X = ‖u‖∞ + ‖v‖∞ .

Let T : B → X be the operator such that (u,v) 7→ T (u,v) := (T p(u,v),T q(u,v)),
where the operators T p : B → C

(
[0, Tmax]; Rnp

)
and T q : B → C

(
[0, Tmax]; Rnq

)
are

defined by

T p(u,v)j = e−tR
p
fp
j (0) +

∫ t

0
e(τ−t)Rp

 np∑
h,k=1

ηpAp,j
hkuhuk +

np∑
h=1

nq∑
k=1

ηpqBpq,j
hk uhvk

 dτ

T q(u,v)j = e−tR
q
fq
j (0) +

∫ t

0
e(τ−t)Rq

 nq∑
h,k=1

ηqAq,j
hk vhvk +

nq∑
h=1

np∑
k=1

ηqpBqp,j
hk vhuk

 dτ
.

(4.21)
The solution of problem (4.20) can be restated as

Find (fp, fq) ∈ B such that (fp, fq) = T (fp, fq)

that is the solution is a fixed point of the operator T in B.

Theorem 4.9 (Well posedness - 1). – For any given initial condition (fp(0), fq(0)) ∈
B, thus satisfying the assumptions (4.19), there exists a unique fixed point (fp, fq) ∈ B of
the operator T defined by (4.21).

Proof. The proof of the statement will be organized by steps and will be achieved by ap-
plying the Banach-Caccioppoli Fixed Point Theorem (or Contraction Mapping Theorem).
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Step 1 First of all we prove that T maps B into itself, i.e.

∀ (u,v) ∈ B ⇒ T (u,v) ∈ B.

It is obvious from (4.21) that T p(u,v)j ≥ 0, ∀ j = 1, . . . , np and T q(u,v)j ≥ 0,
∀ j = 1, . . . , nq. Moreover
np∑
j=1

T p(u,v)j = e−tR
p
np∑
j=1

fp
j (0)+

∫ t

0
e(τ−t)Rp

ρpRpdτ = e−R
ptρp

[
1 +Rp

∫ t

0
eτR

p
dτ
]

= ρp.

Similarly, we have ∑nq

j=1 T q(u,v)j = ρq. Therefore T (B) ⊆ B.

Step 2 Now we show that B is closed inX. To this end we consider a sequence {(uk,vk)}k≥1 ⊆
B such that (uk,vk) k→∞−−−→ (u∞,v∞) ∈ X and we prove that (u∞,v∞) ∈ B. Since
pointwise convergence uk(t) k→∞−−−→ u∞(t) holds then (uk)j(t) ≥ 0, ∀ k, j, t, implies
(u∞)j(t) ≥ 0, ∀ j, t. Moreover, for any fixed k and t, ∑np

j=1(uk)j(t) = ρp and we
obtain ∣∣∣∣∣∣

np∑
j=1

(u∞)j(t)− ρp

∣∣∣∣∣∣ =

∣∣∣∣∣∣
np∑
j=1

(u∞)j(t)−
np∑
j=1

(uk)j(t)

∣∣∣∣∣∣
≤

np∑
j=1
|(u∞)j(t)− (uk)j(t)| = ‖u∞(t)− uk(t)‖1

≤ ‖u∞ − uk‖∞ → 0, k →∞,

thus ∑np

j=1(u∞)j(t) = ρp, ∀ t. Similar considerations hold for v∞, thus (u∞,v∞) ∈ B
and then B is closed in X.

Step 3 We prove that T is a contraction mapping on B. We define the following operators:

A p : B → C
(
[0, Tmax]; Rnp)

, A q : B → C
(
[0, Tmax]; Rnq)

such that

A p(u,v)j(t) = etR
p

 np∑
h,k=1

ηpAp,j
hkuh(t)uk(t) +

np∑
h=1

nq∑
k=1

ηpqBpq,j
hk uh(t)vk(t)



A q(u,v)j(t) = etR
q

 nq∑
h,k=1

ηqAq,j
hk vh(t)vk(t) +

nq∑
h=1

np∑
k=1

ηqpBqp,j
hk vh(t)uk(t)


thus the operators T p and T q write as

T p(u,v)(t) = e−tR
p
(
fp(0) +

∫ t

0
A p(u,v)(τ)dτ

)

T q(u,v)(t) = e−tR
q
(
fq(0) +

∫ t

0
A q(u,v)(τ)dτ

) .
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We consider (u′,v′), (u′′,v′′) ∈ B and we study the Lipschitz condition for T :

‖T (u′′,v′′)−T (u′,v′)‖X = ‖T p(u′′,v′′)−T p(u′,v′)‖∞ + ‖T q(u′′,v′′)−T q(u′,v′)‖∞

≤ sup
t∈[0,Tmax]

e−tR
p
np∑
j=1

∫ t

0
|A p(u′′,v′′)j(τ)−A p(u′,v′)j(τ)| dτ

+ sup
t∈[0,Tmax]

e−tR
q
nq∑
j=1

∫ t

0
|A q(u′′,v′′)j(τ)−A q(u′,v′)j(τ)| dτ

≤
np∑
j=1

∫ Tmax

0
|A p(u′′,v′′)j(τ)−A p(u′,v′)j(τ)| dτ

+
nq∑
j=1

∫ Tmax

0
|A q(u′′,v′′)j(τ)−A q(u′,v′)j(τ)| dτ

because supt∈[0,Tmax] e
−tR = 1 and the integral is positive. Now we focus our attention

on the operator A p, then similar considerations will apply also to the operator A q:

|A p(u′′,v′′)j(τ)−A p(u′,v′)j(τ)| ≤

≤ηpetR
p

np∑
h,k=1

Ap,j
hk |u′′h(τ)u′′k(τ)− u′h(τ)u′k(τ)|

+ ηpqetR
q
np∑
h=1

nq∑
k=1

Bpq,j
hk |u′′h(τ)v′′k(τ)− u′h(τ)v′k(τ)|

≤etRp (2ηpρp + ηpqρq) ‖u′′(τ)− u′(τ)‖1

+ etR
q
ηpqρp ‖v′′(τ)− v′(τ)‖1

≤eTmaxR (C1 ‖u′′ − u′‖∞ + C2 ‖v′′ − v′‖∞)
≤eTmaxRC ‖(u′′,v′′)− (u′,v′)‖X

where R = max (Rp, Rq) and C = max (C1, C2) > 0. On the whole we thus have

‖T (u′′,u′′)−T (u′,v′)‖X ≤ C Tmax e
TmaxR ‖(u′′,v′′)− (u′,v′)‖X

The function C Tmax e
TmaxR vanishes for Tmax = 0 and it is non negative and continu-

ous, thus there exists Tmax > 0 such that C Tmax e
TmaxR < 1 and T is a contraction.

Finally, given an interval [0, Tmax], Tmax > 0, and using the Banach Fixed Point The-
orem, there exists a unique fixed point of T in B. This proves the existence and
uniqueness of a local solution of (4.20) and it guarantees also that the solution is non
negative.

Step 4 In order to show the global existence and uniqueness of the solution, we observe
that (fp(Tmax), fq(Tmax)) ∈ B. Thus (fp(Tmax), fq(Tmax)) can be considered as an
initial condition and the previous Step 3 can be repeated on the interval [Tmax, 2Tmax].
In this way we extend the solution ∀ Tmax > 0.

101



4. Analysis of a multi-population kinetic model for traffic flow

Step 5 Since (fp, fq) ∈ B and the matrices Ap,j and Bpq,j do not depend on the time
variable t we conclude that the right-hand side of the differential system is con-
tinuous in t. Thus, d

dtf
p
j and d

dtf
q
j are continuous in time ∀ j. Therefore, (fp, fq) ∈

C1
(
[0, Tmax]; Rnp

)
×C1

(
[0, Tmax]; Rnq

)
and a classical solution of the problem exists.

Iterating this consideration, (fp, fq) are infinitely differentiable in time. �

Finally, we prove the well posedness of the Cauchy Problem (4.18) using the second ap-
proach, namely exploiting a classical result on global existence and uniqueness to solutions
of first order ODE systems.

Theorem 4.10 (Well posedness - 2). – For any given initial condition (fp(0), fq(0))
satisfying the assumptions (4.19), there exists a unique global solution (fp, fq) ∈ B of the
Cauchy problem (4.18).

Proof. The proof of the theorem is organized by steps and is achieved by applying the
basic general theorem on global existence and uniqueness of solutions to first order ODE
systems with sublinear growth.

Step 1 First of all we prove that the solution (fp(t), fq(t)) (if any) of the Cauchy prob-
lem (4.18) remains positive in time if the initial conditions satisfy (4.19). For this,
consider the population p and assume that there exists an index j = 1, . . . , np such
that fp

j (0) = 0. Then, since the elements of the transition matrices are non-negative,
dfp
j (t)
dt ≥ 0 (see equation (4.18)). Therefore the solution (fp(t), fq(t)) of the first order

ODE system (4.18) cannot cross the hyperplane fp
j = 0 of the phase space during

the time evolution and this guarantees that the solution is non-negative.

Step 2 Now we show that the hypotheses of the general theorem on global existence and
uniqueness of solutions to first order ODE systems with sublinear growth are satisfied.
In particular, observe that the right hand side of equation (4.18) is continuous and
locally Lipschitz continuous, since it is at most a quadratic function in the unknowns
f = (fp, fq). Moreover, focusing on the population p, since Ap,j

hk ∈ [0, 1] and Bpq,j
hk ∈

[0, 1], the non-negativeness of the solution (Step 1) and the conservation of mass yield
the following bounds:

0 ≤
np∑
h=1

Ap,j
hk f

p
h ≤

np∑
h=1

fp
h = ρp, 0 ≤

np∑
h=1

Bpq,j
hk fp

h ≤
np∑
h=1

fp
h = ρp

which render each differential equation sublinear. In fact, we obtain∥∥∥∥∥dfp

dt

∥∥∥∥∥
1

=
np∑
j=1

∣∣∣∣∣ηp
np∑
k=1

(
np∑
h=1

Ap,j
hk f

p
h

)
fp
k + ηpq

nq∑
k=1

(
np∑
h=1

Bpq,j
hk fp

h

)
fq
k −Rpfp

j

∣∣∣∣∣
≤

np∑
j=1

∣∣∣ηp (ρp)2 + ηpqρpρq −Rpfp
j

∣∣∣ =
np∑
j=1

Rp
∣∣∣ρp − fp

j

∣∣∣ ≤ Rp(np − 1) ‖fp‖1 .
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Notice that a similar inequality holds for the population q:∥∥∥∥∥dfq

dt

∥∥∥∥∥
1
≤ Rq(nq − 1) ‖fq‖1 .

This implies the existence and uniqueness of a global and infinitely differentiable in
time solution of the Cauchy problem associated to the ODE system (4.18) with initial
conditions (4.19).

Step 3 Finally, we show that the solution f = (fp, fq) is an element of the subset B. We
have already proved that f remains non-negative in time (Step 1). Again, let us focus
the attention on the population p. By Step 2 the following inequality holds:

dfp
j

dt +Rpfp
j ≤ Rpρp.

Multiplying it by etRp and integrating in time we obtain

fp
j e

tRp ≤ fp
j (0) +

∫ t

0
RpρpesR

p
ds.

Evaluating explicitly the integral and multiplying both sides by e−tRp we finally get

fp
j ≤ fp

j (0)e−tRp + ρp(1− e−tRp)

which proves that fp
j : R+ → [0, ρp] ⊆ [0, 1]. Moreover, using the integral formulation

of equation (4.18) we prove that the sum of the fp
j ’s is constant for all t ≥ 0 and

equal to the density ρp. In fact

np∑
j=1

fp
j = e−tR

p
np∑
j=1

fp
j (0) +

∫ t

0
e(τ−t)Rp

ρpRpdτ = e−R
ptρp

[
1 +Rp

∫ t

0
eτR

p
dτ
]

= ρp.

Similarly, we have that fq
j : R+ → [0, ρq] ⊆ [0, 1] and ∑nq

j=1 f
q
j = ρq, for all t ≥ 0.

This proves that the solution f = (fp, fq) ∈ B. �

Remark 4.11. We notice that the ODE system associated to the lattice two-population
model introduced in [76] and in Section 2.4.1, see equation (2.13), has the same structure
of the Cauchy problem associated to system of equations (4.17) and obtained as discretiza-
tion of the continuous-velocity multi-population model (4.2). Thus, the above analysis on
the well posedness of the discretized model (4.17) can be actually applied also to prove the
well posedness of the lattice model (2.13).

Next we investigate the structure of the equilibria resulting from the ODE system (4.17).
In particular, we prove prove that equilibria of each p-class are uniquely determined by
the initial densities ρp, ρq, ∀ q ∈ ¬p, and that they do not depend on the number of grid
points np. Observe that a fixed value of s ∈ [0, 1] can be obtained with different values of
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the initial densities ρp, ρq, ∀ q ∈ ¬p, thus the equilibria will not be uniquely determined
once s is chosen.

Moreover, the theorem shows that for any s ∈ [0, 1] the number of nonzero asymptotic
distribution functions is determined by T p = V p

max
∆v . More precisely, each p-class of vehi-

cles has exactly T p + 1 non-vanishing equilibria, which are related to the cells Ip
1 , Ip

r+1,
Ip

2r+1, . . . , I
p
np .

Theorem 4.12 (Stable equilibria). – For any fixed ∆v, let (f∞r )p denote the vector
of the equilibrium solutions of the ODE system (4.17) related to the p-class and obtained
on the grid with spacing δv given by ∆v = rδv with r = np−1

T p ∈ N, ∀ p. Then

(f∞r )p
j =

(f∞1 )p
d jre

if mod (j − 1, r) = 0

0 otherwise

is the unique stable equilibrium for all classes of vehicles p and the values of (f i1nfty)p

depend uniquely on the initial densities.

Proof. To prove the statement, we compute explicitly the equilibrium solutions of the
discretized model, using the explicit expression of the collision kernel given in (4.14), (4.15)
and (4.16). For the sake of simplicity we again consider only two populations and we assume
that V1 ⊃ V2.

The equilibrium equations resulting from d
dtf

p
j = 0, ∀ j = 1, . . . , np, ∀ p ∈ {1, 2}, are

quadratic functions of fp
j and we prove that for any j they depend only on the previous

j − 1 equilibrium values. In order to find the stable equilibrium, we recall that it is the
larger root of the quadratic equation if its leading coefficient is negative, while it is the
smaller root otherwise. This consideration will be applied several times during the proof.

For j = 1, the equation d
dtf

p
1 = 0 is computed by means of the expressions (4.14a)-

(4.16a) if p = 1 and (4.14a)-(4.15a) if p = 2. Using the fact that ∑k f
p
k = ρp, ∀ p ∈ {1, 2},

we obtain
d
dtf

p
1 = 0 ⇔ − (1− P ) (fp

1 )2 +
[
− (1− P ) fq

1 +(1−2P )ρp−Pρq
]
fp

1 +(1−P )fq
1 ρ

p = 0, ∀ p
(4.22)

which is a quadratic equation for fp
1 , ∀ p. In order to define the asymptotic expression of

fp
1 , we consider the sum of the equation (4.22) for p = 1 and p = 2:

− (1− P )
(
f 1

1 + f 2
1

)2
+ (1− 2P )

(
ρ1 + ρ2

) (
f 1

1 + f 2
1

)
= 0 (4.23)

which has two real roots, f 1
1 + f 2

1 = 0 and f 1
1 + f 2

1 = 1−2P
1−P (ρ1 + ρ2). It is easy to see

that one solution is stable and the other one unstable, depending on the value of P . More
precisely, we find that the stable one is

f 1
1 + f 2

1 =

0 P ≥ 1
2

1−2P
1−P (ρ1 + ρ2) P < 1

2
. (4.24)
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Since solutions of (4.17) are non-negative (see Theorem 4.9 and 4.10) the equilibrium
distributions of each population are

f 1
1 = f 2

1 = 0, if P ≥ 1
2 .

On the other hand, if P < 1
2 , since ρ

1 and ρ2 are arbitrary, the equilibrium of the sum is
equal to the sum of the steady states of each vehicle class, so that

f 1
1 = 1− 2P

1− P ρ1, f 2
1 = 1− 2P

1− P ρ2

and by substituting these quantities into the equation (4.22) we find indeed that the equa-
tion is satisfied. Moreover, since they are positive provided P < 1

2 and the roots of (4.22)
have opposite sign if P < 1

2 , the stable equilibrium solutions are

(f∞r )p
1 =

0 P ≥ 1
2

1−2P
1−P ρ

p P < 1
2
, ∀ p ∈ {1, 2}. (4.25)

Thus, no vehicle is in the lowest speed class Ip
1 if P ≥ 1

2 .
For 2 ≤ j ≤ r, the equilibrium equation of each population is

− (1− P )
(
fp
j

)2
+
−2(1− P )

j−1∑
k=1

fp
k − (1− P )

j−1∑
k=1

fq
k − (1− P ) fq

j + (1− 2P )ρp − Pρq

 fp
j

+(1− P )fq
j

ρp −
j−1∑
k=1

fp
k

 = 0, ∀ p

and summing this for p = 1 and p = 2 we obtain

− (1− P )
(
f 1
j + f 2

j

)2
+
−2(1− P )

j−1∑
k=1

(
f 1
k + f 2

k

)
+ (1− 2P )

(
ρ1 + ρ2

) (f 1
j + f 2

j

)
= 0.

Start from j = 2. Clearly, for P ≥ 1
2 , substituting the related equilibrium given in

equation (4.24), the stable root is again f 1
2 + f 2

2 = 0. For P < 1
2 , the equation for f 1

2 + f 2
2 ,

with f 1
1 + f 2

1 given by (4.24), becomes

− (1− P )
(
f 1

2 + f 2
2

)2
− (1− 2P )

(
ρ1 + ρ2

) (
f 1

2 + f 2
2

)
= 0.

Comparing with the equation (4.23), we see that now the stable root is f 1
2 + f 2

2 = 0. Thus,
recalling that the solutions of (4.17) are positive in time, the equilibrium values of each
class of vehicles are (fr)p

2 ≡ 0, ∀ P ∈ [0, 1]. Analogously, it is easy to prove that (f∞r )p
j ≡ 0,

∀ j = 3, . . . , r.
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Consider now r+ 1 ≤ j ≤ 2r, the equilibrium equations d
dtf

p
j = 0 is computed by using

the self- and cross-collision terms given in (4.14b)-(4.16b) if p = 1 and in (4.14b)-(4.15b)
if p = 2. Therefore, the equations will contain two extra terms:

Pρpfp
j−r + Pρqfp

j−r

and they write as

− (1− P )
(
fp
j

)2
+
−2(1− P )

j−1∑
k=1

fp
k − (1− P )

j−1∑
k=1

fq
k − (1− P )fq

j + (1− 2P )ρp − Pρq

 fp
j

+(1− P )fq
j

ρp −
j−1∑
k=1

fp
k

+ Pfp
j−r (ρp + ρq) = 0, ∀ p.

(4.26)

If j = r + 1 and P ≥ 1
2 , then from the previous step fp

k = 0, ∀ k = 1, . . . , r and ∀ p.
Therefore, the new terms are certainly zero and the equation is identical to (4.22), so
(f∞r )p

r+1 ≡ 0 ∀ p. Instead, if P < 1
2 , then fp

k = 0, ∀ k = 2, . . . , r and ∀ p, thus the
equation (4.26) reduces to

− (1− P ) (fp
r+1)2 +

[
− 2(1− P )fp

1 − (1− P )fq
1 − (1− P ) fq

r+1 + (1− 2P )ρp − Pρq
]
fp
r+1

+(1− P )fq
r+1 (ρp − fp

1 ) + Pfp
1 (ρp + ρq) = 0, ∀ p.

(4.27)

Summing this equation for p = 1 and p = 2 and substituting the expression for f 1
1 + f 2

1 we
obtain

− (1− P )
(
f 1
r+1 + f 2

r+1

)2
− (1− 2P )

(
ρ1 + ρ2

) (
f 1
r+1 + f 2

r+1

)
+ P

1− 2P
1− P

(
ρ1 + ρ2

)2
= 0.

The resulting stable equilibrium solution is f 1
r+1 + f 2

r+1 = (ρ1 + ρ2) −(1−2P )+
√
Dr+1

2(1−P ) where
Dr+1 = 1 − 4P 2 is positive provided P < 1

2 . The equilibria of population p can be found
recalling that they depend only on the quantity ρp, so that

f 1
r+1 = ρ1−(1− 2P ) +

√
Dr+1

2(1− P ) , f 2
r+1 = ρ2−(1− 2P ) +

√
Dr+1

2(1− P )

and it can be checked that these are the positive solutions of (4.27). Thus, if j = r+ 1 the
stable equilibrium values are

(fr)p
r+1 =

0 P ≥ 1
2

ρp−(1−2P )+
√
Dr+1

2(1−P ) P < 1
2

, ∀ p.
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If, instead, r+ 1 < j ≤ 2r, then fp
j−r ≡ 0, ∀ P ∈ [0, 1] and ∀ p, so the equilibrium equation

resulting from d
dt

(
f 1
j + f 2

j

)
= 0 is identical to (4.23) if P ≥ 1

2 , while it is

− (1− P )
(
f 1
j + f 2

j

)2
−
√
Dr+1

(
ρ1 + ρ2

) (
f 2
j + f 1

j

)
= 0

if P < 1
2 . Then, we obtain (f∞r )p

j ≡ 0, for j = r + 2, . . . , 2r and ∀ P ∈ [0, 1].
Clearly, this procedure can be repeated, in fact, the cases j = 1, . . . , 2r that we just

computed are typical. Also for larger values of j we find a quadratic equation for the
unknown fp

j , which involves only previously equilibrium values, hence we can easily find
successively all components of (f∞r )p, ∀ p.

For j = lr+1, l = 2, . . . , T 2−1, the equation for fp
j is again computed by using (4.14b)-

(4.16b) if p = 1 and (4.14b)-(4.15b) if p = 2. Let Fj = f 1
j +f 2

j , then summing the evolution
equation of both populations we obtain

− (1− P )F 2
lr+1 +

[
−2(1− P )

l−1∑
k=0

Fkr+1 + (1− 2P )
(
ρ1 + ρ2

)]
Flr+1 + PF(l−1)r+1 (ρp + ρq) = 0.

If P ≥ 1
2 , then the above equation becomes identical to (4.22) and the stable root is

Flr+1 = 0. If instead P < 1
2 , then the stable solution is

Flr+1 =
−2(1− P )

l−1∑
k=0

Fkr+1 + (1− 2P )
(
ρ1 + ρ2

)
+
√
Dlr+1

2(1− P )

where

Dlr+1 =
[
−2(1− P )

l−1∑
k=0

Fkr+1 + (1− 2P )
(
ρ1 + ρ2

)]2

+ 4(1− P )PF(l−1)r+1
(
ρ1 + ρ2

)
,

which is positive ∀P ∈ [0, 1] because it is a sum of two positive terms. The equilibrium
solutions of population p can be again deduced by assuming that they are functions only
of the quantities depending on p, so that

(f∞r )p
lr+1 =


0 P ≥ 1

2

−2(1− P )
l−1∑
k=0

fp
kr+1 + (1− 2P )ρp +

√
Dp
lr+1

2(1− P ) P < 1
2

, l = 0, . . . , T 2 − 1,∀ p

where

Dp
lr+1 =

[
−2(1− P )

l−1∑
k=0

fp
kr+1 + (1− 2P )ρp

]2

+ 4(1− P )Pfp
(l−1)r+1ρ

p.

Finally, if lr + 2 ≤ j ≤ (l + 1)r, l = 2, . . . , T 2 − 1, then the equilibria are (f∞r )p
j ≡ 0,

∀ P ∈ [0, 1] and ∀ p.
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Note that for j = n2, i.e. for the maximum speed of population p = 2, the equilibrium
value related to the population p = 2 can be found by using mass conservation, so that

(f∞r )2
n2 = ρ2 −

n2−1∑
k=1

f 2
k . (4.28)

Instead, for the population p = 1, the equilibrium equation is obtained by means of (4.14b)-
(4.16c). If P < 1

2 , then f
p
j 6= 0, if j = kr + 1, k = 0, . . . , T 2 − 1 and ∀ p. Thus, we find

− (1− P )
(
f 1
n2

)2
+
−2(1− P )

T 2−1∑
k=0

f 1
kr+1 + (1− 2P )ρ1 − ρ2

 f 1
n2

+(1− P )f 2
n2

ρ1 −
T 2−1∑
k=0

f 1
kr+1

+ Pf 1
n2−r

(
ρ1 + ρ2

)
whose stable root is

(f∞r )1
n2 =

−2(1− P )
T 2−1∑
k=0

f 1
kr+1 + (1− 2P )ρ1 − ρ2 +

√
Dn2

2(1− P ) (4.29)

where the discriminant

Dn2 =
−2(1− P )

T 2−1∑
k=0

f 1
kr+1 + (1− 2P )ρ1 − ρ2

2

+ 4(1− P )
(1− P )f 2

n2

ρ1 −
T 2−1∑
k=0

f 1
kr+1

+ Pf 1
n2−r

(
ρ1 + ρ2

) (4.30)

is positive provided ∀P ∈ [0, 1]. If instead P ≥ 1
2 , then the equilibrium value is again of

the form (4.29) with the discriminant (4.30), but it is obtained by taking fp
j = 0, ∀ j < n2,

∀ p and thus f 2
n2 = ρ2, see equation (4.28).

Let j = n2 + 1, now vj ∈ V1 but vj /∈ V2. The equilibrium equation for p = 1 is
computed by using (4.14b)-(4.16e). We obtain

− (1− P )
(
f 1
n2+1

)2
+
−2(1− P )

T 2∑
l=0

f 1
lr+1 + (1− 2P )ρ1 − ρ2

 f 1
n2+1 = 0 (4.31)

and f 1
n2+1 = 0 results the stable solution ∀ P ∈ [0, 1]. This consideration holds for each f 1

j ,
n2 + 1 < j ≤ n2 + r− 1 because the equation resulting from d

dtf
1
j = 0 is identical to (4.31).

Thus, (f∞r )1
j ≡ 0, n2 + 1 ≤ j ≤ n2 + r − 1.

Now, let j = n2 +r. If V 1
max−V 2

max = m1,2∆v with m1,2 = 1 then n2 +r = n1 and we can
use mass conservation to find (f∞r )1

n2+r. Instead, if m1,2 > 1, we use the equations (4.14b)-
(4.16e) in order to compute d

dtf
1
n2+r = 0. Since f 1

j ≡ 0, if j 6= kr + 1, k = 0, . . . , T 2, we
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find

− (1− P )
(
f 1
n2+r

)2
+
−2(1− P )

T 2∑
k=0

f 1
kr+1 + (1− 2P )ρ1 − ρ2

 f 1
n2+r + Pf 1

n2

(
ρ1 + ρ2

)
= 0.

(4.32)

If P < 1
2 the stable solution of the above equation is

(f∞r )1
n2+r =

−2(1− P )
T 2∑
k=0

f 1
kr+1 + (1− 2P )ρ1 − ρ2 +

√
Dn2+r

2(1− P ) (4.33)

where the discriminant

Dn2+r =
−2(1− P )

T 2∑
k=0

f 1
kr+1 + (1− 2P )ρ1 − ρ2

2

+ 4(1− P )Pf 1
n2

(
ρ1 + ρ2

)
(4.34)

is positive ∀P ∈ [0, 1]. If instead P ≥ 1
2 then the stable root of (4.32) is again of the

form (4.33) with the discriminant (4.34), but it is obtained by taking f 1
j = 0, ∀ j 6= n2.

Equations (4.31) and (4.32) actually hold for each n2 + 1 ≤ j ≤ n1 − 1. In particu-
lar, (4.31) is the equilibrium equation for the f 1

j ’s such that j 6= n2 +kr, k = 1, . . . ,m1,2−1.
Thus we find (f∞r )2

j = 0, ∀P ∈ [0, 1].
Conversely, (4.32) is the equilibrium equation for the f 1

j ’s such that j = n2 + kr,
k = 1, . . . ,m1,2− 1. Therefore, the equilibrium value (f∞r )2

j = 0 is again of the form (4.33)-
(4.34).

Finally, the last equilibrium value for the population p = 1 can be found by mass
conservation, so that

(f∞r )1
n1 = ρ1 −

n1−1∑
k=1

f 1
k . �

Theorem 4.12 ensures that the equilibrium values of the discretized model (4.17) can
be found on the coarser grid, namely taking r = 1. The result can be better appreciated
by looking at the evolution towards equilibrium shown in Figure 4.4. In this figure, we
consider two populations such that V 1

max = 100 km/h and V 2
max = V 1

max − 2∆v = 50 km/h.
Then, T 1 = 4 and T 2 = 2. The different plots show the evolution towards equilibrium,
starting from uniform initial distributions for r = 1 (cyan) and r = 3 (magenta), which
correspond to np = 5, 13 velocity grid points for the population p = 1 (top panels) and
np = 3, 7 velocity grid points for the population p = 2 (bottom panels). The left plots are
obtained with the fraction of occupied space s = 0.2, while the right plots with s = 0.6.
Note that different dynamics towards equilibrium are observed, for different values of the
number np, p = 1, 2, of grid points, but as equilibrium is approached, the values of the
equilibria go to zero, except for the cells Ip

j , p = 1, 2, corresponding to integer multiples
of ∆v. In fact, for r = 3, the nonzero equilibrium values, marked with black squares, are

109



4. Analysis of a multi-population kinetic model for traffic flow

0 20 40 60 80 100
0

5

10

15

20

25

30

35

40

45

50

V 1

(f
r
1
)1
(t
)

s = 0.2, p = 1

 

 
r=1
r=3

0 20 40 60 80 100
0

5

10

15

20

25

30

35

40

45

50

V 1

(f
r
1
)1
(t
)

s = 0.2, p = 1

 

 
r=1
r=3

0 10 20 30 40 50
0

5

10

15

V 2

(f
r
2
)2
(t
)

s = 0.2, p = 2

 

 
r=1
r=3

0 10 20 30 40 50
0

5

10

15

V 2

(f
r
2
)2
(t
)

s = 0.2, p = 2

 

 
r=1
r=3

Figure 4.4: Evolution towards equilibrium of the ODE system (4.17) for the case of two populations,
p = 1 (top panels) and p = 2 (bottom panels), with a fixed value of the velocity jump
∆v = 25 km/h. The maximum velocities are V 1

max = 100 km/h and V 2
max = 50 km/h.

The velocity grid is obtained with r = 1 (cyan) and r = 3 (magenta), which correspond to
n1 = 5, 13 and n2 = 3, 7 grid points. Black squares indicate the equilibrium values.

related to the velocities of the grid with r = 1 and marked with cyan filled circles. While
the additional velocities of the refined grid, marked with magenta filled circles, correspond
to zero values of the equilibria.

We end the section with several remarks on the structure of the equilibrium solutions.

Remark 4.13 (∆v depending on p). In Section 4.3.1 we have assumed that the
speed jump ∆v is independent of p so that it is a fixed parameter for all classes of vehicles.
Taking the velocity jump dependent on p would mean to consider another microscopic dif-
ference characterizing the types of vehicles. More precisely, we can use it in order to model
the subjective behavior of drivers, since we can think of ∆v as a parameter describing
different types of drivers, more or less aggressive depending on the value of the jump in
velocity.
Even with ∆v dependent on p, equilibrium solutions preserve the property of being quan-
tized that is non-zero on a reduced number of discrete velocities. Let us consider the same
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Figure 4.5: Evolution towards equilibrium of the ODE system (4.17) for the case of two populations,
p = 1 (left panels) and p = 2 (right panels), with two different values of the velocity jump
∆v1 = 20 km/h and ∆v2 = 10 km/h. The maximum velocities are V 1

max = 100 km/h and
V 2

max = 50 km/h. The velocity grid is obtained with r1 = 2, r2 = 1 (cyan) and r1 = 4,
r2 = 2 (magenta). Black squares indicate the equilibrium values.

example shown in the right panels of Figure 4.4 with two populations, p = 1, 2, having
maximum velocities V 1

max = 100 km/h and V 2
max = 50 km/h. Now we take two different

velocity jumps, ∆v1 = 20 km/h and ∆v2 = 10 km/h in order to model the case in which
population p = 1 is more aggressive than population p = 2. We choose the discretization
parameters r1 and r2 in such a way that the velocity grids of the two populations have
the same spacing δv = V 1

max/r
1 = V 2

max/r
2. This means that we have to take r1 = 2r2.

In Figure 4.5 we show the evolution towards equilibrium for both populations p = 1 (left
plot) and population p = 2 (right plot). We start from uniform initial distributions and we
consider two cases: first we choose r2 = 1 (and therefore r1 = 2) (cyan), then we choose
r2 = 2 (and therefore r1 = 4) (magenta). These values correspond to n1 = 13, 25 and
n2 = 6, 11 velocity grid points. Again we observe that equilibria are quantized. Precisely
only the values related to the cells Ip

j , p = 1, 2, corresponding to integer multiples of ∆v2,
i.e. the minimum of the two jumps, give a non-zero contribution irrespective of grid re-
finements. In fact, the equilibrium values of population p = 1 are quantized according to
the velocity jump of population p = 2.
Notice that in this case ∆v1 is an integer multiple of ∆v2 but the same phenomenon verifies
in a more general situation.

Remark 4.14 (Unstable equilibria). Theorem 4.12 gives the uniqueness of the
stable equilibria of the model. However, as already observed in Remark 3.12, unstable
ones may occur if the initial condition is such that fp

1 (0) = 0, ∀ p. In fact, the interaction
rules in the case v∗ > v∗ do not allow for a post-interaction velocity v ∈ Vp which is lower
than v∗. Thus if fp

1 (0) = 0, i.e. there are no vehicles of the p-class with velocity v1 at the
initial time, interactions will not lead to an increase of fp

1 . In this sense, the equilibrium
solution of the multi-population model does not only depend on the initial densities, but
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also on the initial condition fp(0, v) because “spurious” equilibria on sub-manifolds of the
state space may appear. However, as showed in [75], these solutions are unstable: a small
perturbation of fp

1 (0) is enough to trigger the evolution towards the stable equilibrium,
which depends only on the initial densities.

Remark 4.15. In Theorem 4.12 the equilibria related to the sum of the distribu-
tion functions are identical to those computed in [75] and in Section 3.3.1 for the single-
population δ model, see Theorem 3.9. This shows that the indifferentiability principle holds
at equilibrium. However, Theorem 4.4, proved in Section 4.3, is more general because it
states that the indifferentiability principle for the continuous multi-population model holds
at all times.

Remark 4.16. In Section 2.4.3 we have computed the equilibrium solutions of the
two-population lattice model (2.16) for the case P ≥ 1/2. The aim was to investigate the
impact of the choice of P on the transition from free to congested regime. In Theorem 4.12,
instead, we have computed the equilibrium solutions of the multi-population model for each
value of P . Again, the phase transition is mathematically explained by the bifurcation of
the equilibria occurring when the critical value P = 1/2 is reached, see equation (4.25).
In fact, as observed in Section 2.4.3, P = 1/2 marks the value in which also the equilibria
related to the lower velocities, namely those speeds being lower than the minp{V p

max},
become filled up.
Finally, we notice that the equilibrium distribution (4.25) of vehicles with velocity in the
lowest class Ip

1 is the same computed in Section 2.4.3.

4.4 Fundamental diagrams of traffic
In this Section we present the fundamental diagrams obtained with the multi-population

kinetic model described in this chapter. In particular, we wish to show that the scattering
of data is again reproduced as a result of the heterogeneous composition of the flow. Since
the model (4.17) is expressed for a generic number of populations, we focus on the case of
a mixture composed of three types of vehicles. Such diagrams provide the relation between
flux and density at the macroscopic level.

Macroscopic variables for the p-class of vehicles are recovered computing moments of the
distribution functions fp, see equations (4.1). However, fundamental diagrams are obtained
by assuming that traffic is in equilibrium. Therefore, we compute the quantities (4.1) using
the asymptotic distributions (f∞r )p. Since for each population p the (f∞r )p’s depend uniquely
on the densities of all vehicle classes, at equilibrium we have that the flux is a function of
the initial densities and it is computed as

qp(r) =
∫
Vp
v (f∞)p (v)dv =

∫
Vp
v
np∑
j=1

(f∞r )p
j

χIp
j
(v)∣∣∣Ip
j

∣∣∣ dv

=
(
f1
r infty

)p

1
vp

1 +
np−1∑
j=2

(f∞r )p
j v

p
j + (f∞r )p

np v
p
np (4.35)
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where the velocities vp
j are the mid points of the cells Ip

j resulting with the grid size δv = ∆v
r

and the (f∞r )p
j ’s are the equilibrium solutions. We recall that the vp

j ’s for j = 2, . . . , np do
not change when the grid is refined, i.e. when r increases, while the first and last velocity
grid point approach zero and the maximum velocity of the p-class, respectively, when
r → ∞. Recall that Theorem 4.12 states that the equilibrium values of the discretized
model do not depend on the discretization, i.e. on the grid size δv and on the discrete
speeds vp

j ’s, but only on the velocity jump ∆v. Therefore, the flux can be computed
exactly using the values (f∞1 )p

j , j = 1, . . . , T p + 1 = np. In other words, for the case of
two populations we can exploit the explicit formulas for the equilibrium solutions given
in Theorem 4.12. Instead, for more than two populations we numerically integrate the
system (4.17) on the coarser velocity grid (r = 1) to recover the equilibrium values and
using the results of Theorem 4.12 we obtain the exact flux as

qp(∞) =
T p+1∑
j=1

(f1)p
j (j − 1)∆v. (4.36)

Notice that this result is due to the quantized structure of the equilibria, which is in turn
a consequence of the quantized acceleration, i.e. the instantaneous jump of velocity from
the actual one v∗ to min{v∗+ ∆v, V p

max}, see equation (4.6). Finally, once the flux is given,
the macroscopic speed of the p-class can be obtained as

up(∞) = qp(∞)
ρp . (4.37)

Since in the space homogeneous case each density ρp is constant in time, the fraction of
occupied space s remains also constant. Hence we study the total flux Q = ∑

p q
p and the

mean speed U =
∑

p q
p∑

p ρ
p at equilibrium as functions of the total number of vehicles per unit

length Nv = ∑
p ρ

p and of the fraction of occupied space s.
In the case of the single-population model [75] (see Section 3.5, the flux and the speed

at equilibrium are single-valued functions of the initial density. However, this property
does not reflect the structure of the fundamental diagrams provided by experimental data,
because such diagrams are multivalued with a wide dispersion of the flux values in the
congested phase of traffic, i.e. at high densities, see Section 2.2. Here, as done in Chapter 2
for the multi-population lattice model, the scattered behavior of the real data will be
recovered because traffic is treated as a mixture of more than one population characterized
by different physical features. In fact, note that the equilibria related to the p-population,
and showed in Theorem 4.12, do not only depend on the initial density ρp but also on
the values of the occupied space s. Thus, since the same value of s can be obtained with
different compositions of the traffic mixture, for a given s ∈ [0, 1] we may find different
equilibria, hence different flux and speed values at equilibrium, depending on how the road
is occupied.

In the following, we investigate the properties of the diagrams provided by the multi-
population kinetic model. We show that they exhibits different regimes, or phases, of traffic
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Table 4.1: Physical parameters of the four classes of vehicles chosen for the simulations.

Fast Cars Slow Cars Vans Trucks
(p = Cf) (p = Cs) (p = V ) (p = T )

Typical length lp 4 m 4 m 6 m 12 m
Max. density ρp

max 250 veh./km 250 veh./km 166.6 veh./km 83.3 veh./km
Max. velocity V p

max 120 km/h 80 km/h 120 km/h 80 km/h
Velocity jump ∆v 40 km/h 40 km/h 40 km/h 40 km/h

and they reproduce the qualitative structure of experimental diagrams widely analyzed
in [10, 26, 46, 76].

We introduce four typical classes of vehicles whose characterizing parameters are listed
in Table 4.1 and all simulations are performed by choosing three of them. More precisely we
consider Fast Cars-Slow Cars-Trucks (Cf-Cs-T ) or Fast Cars-Vans-Trucks (Cf-V -T ). The
diagrams are computed by sampling three random values of the initial densities for any
initial fraction of occupied space s ∈ [0, 1]. Moreover, recalling the computations already
made in [75] to evaluate a physical velocity jump ∆v, here we can consider ∆v = 40 km/h.
With this choice, the numbers of discrete velocities are nCf = nV = 4 and nCs = nT = 3.

Free phase of traffic This traffic regime occurs at low densities, when there is a large
distance between vehicles and the interactions are rare. Thus, we expect that the
velocity of vehicles is ruled by the maximum allowed speed, which in this framework
depends on the mechanical characteristics of the vehicles (e.g. when we assume
V Cf

max > V T
max) or on the type of drivers (e.g., when we assume that there are two

types of cars such that V Cf
max > V Cs

max). Therefore, in the free phase of traffic the flux
increases nearly linearly with respect to the total density, the data are not widely
scattered and are contained in a cone whose upper and lower branch have a slope
proportional to maxp{V p

max} and minp{V p
max} respectively, ∀ p ∈ {Cf , Cs, V, T}. For

instance, in Figure 4.6 we show the free phase of the diagrams provided by the multi-
population model with three classes of vehicles. This regime is obtained by taking
only the values of the fraction of road occupancy for which P ≥ 1

2 . In fact, as proved
in Theorem 4.12 and as shown in the left panels of Figure 4.4, this choice produces
equilibria of the form

fCf = [0, 0, ∗, ∗]︸ ︷︷ ︸
nCf =4

, fCs = [0, 0, ρCs ]︸ ︷︷ ︸
nCs =3

, fV = [0, 0, ∗, ∗]︸ ︷︷ ︸
nV =4

, fT = [0, 0, ρT ]︸ ︷︷ ︸
nT=3

.

Thus, all classes of vehicles travel at high velocities and in particular the flux of
slow cars and trucks is always proportional to the their maximum velocity V Cs

max and
V T

max respectively. Instead, the flux values of fast cars and vans depend also on the
maximum velocity of slow cars and trucks. In the left panel of Figure 4.6 we consider
the test case Cf-Cs-T and we observe that the flux values obtained are scattered in
the whole cone, in contrast with the case Cf-V -T shown in the right panels in which
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Figure 4.6: Top: free phase of the flux-density diagrams. Bottom: free phase of the speed-density
diagrams. On the left we consider the three populations Cf-Cs-T , on the right Cf-V -T . The
data are obtained for values of the fraction of road occupancy such that P ≥ 1

2 . In the top
panels the solid red line and the dotted green line have slope respectively as the maximum
velocity and the minimum velocity of the three populations. The probability P is taken as
in (2.9) with α = γ = 1.

both fast cars and vans travel at speed 120 km/h and therefore the flux values are
mainly distributed on the upper branch. This consideration can be reinforced by
looking at the macroscopic speed diagrams, bottom panels of Figure 4.6.

Phase transition It represents the transition between the free and the congested phase
of traffic. The flux is maximum when the critical value of the fraction of occupied
space s, at which P = 1/2 and the phase transition occurs, is reached. If s increases
then we observe a decrease of the flux and of the mean speed in the diagrams of
traffic. From a mathematical point of view, the phase transition occurs when there
is the bifurcation of the equilibrium values, that is when P becomes smaller than 1

2 .
In fact, when P ≥ 1

2 all vehicles are moving and only when P < 1
2 the lower speed

classes begin to fill up, see equation (4.25) in Theorem 4.12. Since P is a function of
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Figure 4.7: Diagrams of the flux vs. the fraction of occupied space for the test case Cf-Cs-T . The
probability P is taken as in (2.9) with α = 1 and γ = 1 (left), γ = 1

2 (right).

s, the choice of the probability P influences the critical value. In order to investigate
this phenomenon, in Figure 4.7 we consider the total diagram of the flux with respect
to the fraction of occupied space s. In both panels we consider the law given in (2.9)
with α = 1, but we choose two different values of γ ∈ (0, 1]: more precisely, γ = 1
and γ = 1

2 in the left and right plot, respectively. Note that the critical value of the
fraction of occupied space decreases from s = 1

2 to s = 1
4 . In fact, with (2.9)

P <
1
2 ⇐⇒ s >

(1
2

) 1
γ

and this means that high values of γ increase the value of s at which the transition
between the two regimes of traffic occurs. Thus, γ > 1 is not a good choice be-
cause it does not reflect the structure of the phase transition usually observed in the
experimental diagrams.

Congested phase of traffic This traffic regime occurs at high densities, that is when
the fraction of occupied space s exceeds the critical value. The congested phase is
characterized by frequent interactions among vehicles which are forced to slow down,
i.e. they cannot travel at the same high speeds as in free road conditions, because
traffic becomes more and more jammed. As a consequence, the flux decreases as
the fraction of occupied space increases and the experimental diagrams exhibit a
large scattering of the flux values. In the congested phase, therefore, the flux can
hardly be approximated by a single-valued function of the density. The scattered
behavior is automatically reproduced by our multi-population kinetic model, see the
left panels of Figure 4.8 in which we plot the total flux- and speed-density diagrams
for the test case Cf-V -T with the probability law (2.9). Recalling that the diagrams
of traffic are obtained by means of the equilibrium distributions, the multi-population
model naturally accounts for the dispersion of the flux values in the congested phase
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Figure 4.8: Top: flux-density diagrams. Bottom: diagrams of the speed vs. the fraction of occupied
space. We have considered the three populations Cf-V -T . In the left panels the probability
of changing velocity P is taken as in (2.9) with α = γ = 1, while in the right panels the
probability P is as in (4.38) with sc = 1

2 and µ = − 1
8 .

because the equilibrium solutions do not only depend on the fraction of occupied
space s but also on the single densities of the vehicles. Therefore, the explanation
for the multivalued behavior is based on the consideration that the flow along a road
is strongly influenced by the composition of the traffic mixture. In particular, this
aspect is evident at high densities because the different mechanical characteristics
(the typical length) of the vehicles on the road become a key factor to adjust the
speed in congested conditions. Conversely, if we focus on the diagrams of the speed
vs. the fraction of occupied space at the bottom of Figure 4.8, we deduce that in
free flow conditions the macroscopic speed is influenced by the fact that fast vehicles
slow down as a consequence of their interactions with slower vehicles. In contrast,
at high values of s, all types of vehicles are forced to slow down, reaching the same
macroscopic speed. These remarks reflect the daily experience of driving on highways,
in particular the fact that in congested flow all vehicles tend to travel at the same
speed, which steadily decreases as the traffic congestion increases.
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Capacity drop The flux-density diagram in the top-left panel of Figure 4.8 is very similar
to the experimental ones, whose main characteristics are well reproduced. However,
as observed also in the single-population model [75], see Section 3.5, the diagrams
seem to be strictly dependent on T p, which defines uniquely the number of discrete
velocities once V p

max and ∆v are given. In fact, the capacity drop, that is the jump
between the maximum flux values in free and congested phases, see e.g. [88], becomes
sharper and sharper when T p increases. For instance, with the choice of the physical
parameters listed in Table 4.1, the number of velocities of fast cars is nCf = 4 and
this provides a sharp decrease of the flux of the Cf-class beyond the critical fraction
of occupied space. Clearly, this phenomenon influences also the capacity drop of
the total diagram obtained with the multi-population model. We try to overcome
this drawback acting on the law which defines the dependence of P on s. To this
end, we introduce a new law relating P to s in order to better fit experimental data.
As a matter of fact, the sharp transition is due to over-crowding of the low-speed
equilibrium distributions, also for values of s just greater than the critical value.
Thus, if Pγ(s) is the γ-law given in equation (2.9), the purpose is now to introduce
a new and less simplistic function P (s) such that Pγ(s) < P (s) < 1

2 , ∀ s > sc, where

sc is the critical value of s obtained with the γ-law, i.e. sc =
(

1
2

) 1
γ . Thus, when

s just exceeds sc, the new probability P (s) provides an under-crowding of the first
equilibrium distributions (4.25). As a consequence, the maximum flux value of the
congested phase increases and the capacity drop abates. Recalling that P is the
probability of achieving the maximum speed prescribed by the interaction rules, the
desired function P (s) ∈ [0, 1] should satisfy the following properties:

1. P (0) = 1: when the road is empty, the probability of accelerating is maximum;
2. P (1) = 0: in contrast to the previous request, the probability is zero in jammed

traffic situations;
3. P (sc) = 1

2 : we impose that the transition from free to congested phase corre-
sponds to the bifurcation of the equilibrium solutions and it occurs at s = sc.
The value of the critical space can be chosen by means of experimental data;

4. d
dsPγ|s=s+c

< d
dsP|s=s+c

:= µ < 0: since any reasonable P should be a decreasing
function of s, this is a sufficient condition to verify Pγ(s) < P (s) < 1

2 , ∀ s > sc.
Thus, since γ is uniquely determined once the value of the critical space is fixed,
we require that µ > d

dsPγ|s=s+c
= −γsγ−1

c = −γ
(

1
2

)1− 1
γ .

In order to satisfy the four properties above and since the equilibrium solutions do
not depend on the analytical expression of P (s) (for s ∈ [0, sc]) we consider P as a
piecewise function of s, so that

P (s) = P1(s)χ[0,sc](s) + P2(s)χ(sc,1](s) (4.38)
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Figure 4.9: Left: the probability law (2.9) (black solid line) with sc = 1
2 , α = γ = 1, and the probability

law (4.38), which differs from the γ-law only for s > sc = 1
2 , obtained with three different

values of the slope µ for s = sc. Right: the asymptotic distribution f1 (lower speed) obtained
with the probability laws considered in the left panel.

where P1(s) is a linear polynomial satisfying the first and the third property, while
P2(s) is a quadratic polynomial satisfying the second, the third and the fourth prop-
erty. Therefore

P1(s) = 1− s

2sc
, P2(s) = as2 + bs+ c

the coefficients of P2 being

a = 2µ(sc − 1)− 1
2(sc − 1)2 , b = −µ(s2

c − 1)− sc
(sc − 1)2 , c = 2sc [µ(sc − 1)− 1] + 1

2(sc − 1)2 .

For simplicity, in the left panel of Figure 4.9 we consider the probability laws with
sc = 1

2 . Thus, γ = 1 and the γ-law (2.9) writes as P = 1 − s, while the piecewise
probability law (4.38) is plotted for different values of the slope µ computed in s =
sc = 1

2 such that µ > −1 = d
dsPγ|s=sc= 1

2
. Notice that the probability values resulting

from the piecewise law increase for ∀ s > sc when µ is increased and this provides a
little decrease of the first equilibrium distribution. This can be seen it in the right
panel of Figure 4.9, in which we plot the asymptotic distribution f1 as a function of
s for the case of a single-population. Thus, the piecewise law allows one to reduce
the sharp capacity drop. For instance, this can be appreciated by comparing the
diagrams in the left panels of Figure 4.8 obtained with the γ-law and the diagrams
in the right panels of Figure 4.8 obtained with the piecewise probability law.
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Chapter 5

Multivalued fundamental diagrams of
traffic flow in the kinetic
Fokker-Planck limit

5.1 Motivation
In the previous chapters we have introduced a kinetic model for traffic flow which

provides a good agreement between the theoretical and the experimental diagrams. In
particular, the extension to a multi-population framework allowed us to explain the scat-
tering of data as a result of the intrinsic heterogeneity characterizing the flow of traffic.

In [85] and in this chapter, we wish to study in detail the impact of the microscopic rules
(and thus of the modeling choices) describing the behavior of drivers on the macroscopic
traffic dynamics. Therefore, throughout the chapter we follow an approach being intrin-
sically multiscale because we continually compare the microscopic and the macroscopic
scale.

To this end, we recall that our aim requires the ability to compute the asymptotic
kinetic distribution from which to recover the macroscopic traffic variables at equilibrium.
Although in the previous chapters the analytical expression of the stationary solution is
found using a suitable choice of the microscopic interactions (which leads to a quantized
asymptotic state), in general the interaction integrals appearing in kinetic Boltzmann-type
models for traffic flow typically do not provide explicitly the equilibrium distribution and
they are very demanding from a computational point of view, see e.g. [48].

For this reason, in [85] and in this chapter, starting from a Boltzmann-type model we
derive a Fokker-Planck approximation by means of a suitable time scaling (the grazing col-
lision limit, see e.g. [21, 22, 65, 67, 84]). In this way, the interaction integrals of the collision
operator are replaced by differential operators, allowing us to retain the principal part of
the microscopic interactions while making the Boltzmann-type model more amenable to
analytical investigations. In particular we follow the technique introduced in [41] for traffic
flow, or in [81] in the context of opinion formation models and in [65] for gas-dynamics.
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However, although the present chapter can be considered as a natural sequel of [41], in
contrast here we simplify the grazing collision limit, which now does not depend on free
parameters.

Thi microscopic behavioral rules are affected by the microscopic average conditions
of traffic, thereby establishing a feedback between the small and the large scales of the
phenomenon. In fact, in contrast to the binary rules introduced in the previous chapters,
here we take into account mean field interactions assuming thus that drivers decide to
adjust their velocity using as reference the mean speed. In particular, we analyze three
possible modeling of the microscopic rules showing that they influence the qualitative
structure of fundamental diagrams. Moreover, in all the cases we can recover multivalued
diagrams as a result of the existence of a one-parameter family of stationary solutions.
We prove that this degree of freedom synthesizes the different properties of the flow which
can induce different macroscopic dynamics. We also improve the multivalued diagrams
obtained in [44], in which the authors introduce a Fokker-Planck-type multilane model
and recover scattered data as a consequence of the introduction of a probability of lane
changing. As a matter of fact, the diagrams show only a small range of density in which
the flux of vehicles is multivalued. In addition to that, they reproduce a capacity drop
which is too sharp.

The chapter is organized as follows. In Section 5.2 we introduce the microscopic inter-
action rules and we discuss the similarities with other models. In particular, we show that
the rules can be obtained by averaging the post-interaction speeds prescribed in [75] with
the addition of a stochastic perturbation due to the inability of the drivers to adjust pre-
cisely their speed. In contrast to [41], another stochastic term is introduced, which models
the influence of the road congestion on the drivers’ behavior. In Section 5.3 we derive
the Fokker-Planck model as the grazing collision limit of the Boltzmann-type equation. In
Section 5.4 we recover the time-asymptotic kinetic distributions in general form. Then, we
specify the interaction rules by choosing the desired speeds of the drivers in braking and
acceleration scenarios and we study the fundamental diagrams resulting from two cases.
We show that a particular choice of the desired speeds allows one to reproduce the closures
law for macroscopic models, as for instance the Greenshields’ closure [32]. Conversely the
diagrams obtained from the second set of desired speeds reproduce very well the qualitative
structure of experimental data, in particular their scattering in the congested flow regime.

5.2 Boltzmann model
Recalling that the core of a kinetic model for traffic flow is the modeling of the micro-

scopic interactions among the vehicles, we first discuss the choice of a set of interaction
rules and then we recover a Boltzmann-type equation. As usual, the model is character-
ized by a collision term which describes the relaxation of the kinetic distribution towards
equilibrium.

Here, we assume that drivers react to the mean speed of the surrounding vehicles.
Thus, they adjust their velocity by comparing their actual speed with the macroscopic
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velocity u. We recall that, in kinetic theory, the macroscopic variables are recovered as
moments of the kinetic distribution function f = f(t, v) : R+ × V → R+. Here we assume
that V = [0, Vmax] is the space of the microscopic velocities, Vmax > 0 being the maximum
speed, which usually depends on the mechanical characteristics of the vehicles, on imposed
speed limits or on the type of drivers. Then

ρ(t) =
∫ Vmax

0
f(t, v)dv, q(t) =

∫ Vmax

0
vf(t, v)dv, u(t) = 1

ρ(t)

∫ Vmax

0
vf(t, v)dv,

where as usual ρ is the vehicle density, u is the mean speed and q = ρu is the flux.

Remark 5.1. As done in the previous chapters, throughout the chapter we consider
the “spatially homogeneous case”, i.e. we assume that vehicles are uniformly distributed
along the road so that the kinetic distribution function f depends only on their microscopic
speed v ∈ V but not on their position x. This assumption allows for a direct focus on the
interaction dynamics among the vehicles, neglecting possible space inhomogeneities.

5.2.1 Microscopic model
Let v∗ be the pre-interaction velocity of a vehicle and let u be the mean speed of the

flow. We distinguish two cases:

Acceleration Vehicles tend to increase their speed when they are slower than the speed
of the flow, namely if v∗ < u;

Braking Vehicles tend to decrease their speed when they are faster than the speed of the
flow, namely if v∗ > u.

Remark 5.2. Notice that we do not model the scenario in which v∗ = u, when it is
realistic to assume that vehicles do not change their speed. We will see that this case does
not give contribution in the Fokker-Planck approximation, see Section 5.3.

We point out that the interaction rules in traffic flow are different from the gas dynamics
case. In particular, the post-interaction speeds resulting from the two scenarios described
above are not necessarily symmetric. Therefore, from a microscopic point of view, we
can prescribe the following form of the output velocity v resulting from acceleration and
braking:

v = v∗ + ε P (ρ) ∆vA(v∗, ρ) +
√
εQA(ρ) ∆vA(v∗, ρ) ξ, if v∗ < u (5.1a)

v = v∗ − ε (1− P (ρ)) ∆vB(v∗, u, ρ) +
√
εQB(ρ) ∆vB(v∗, u, ρ) ξ, if v∗ > u (5.1b)

where
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• ∆vA(v∗, ρ) is the jump of velocity in the acceleration interaction. We assume that

∆vA(v∗, ρ) := VA(v∗, ρ)− v∗.

The quantity VA(v∗, ρ) ∈ (v∗, Vmax] is the desired speed of a vehicle that increases its
velocity v∗. In a realistic framework, VA(v∗, ρ) cannot be taken as a fixed parameter.
Therefore, in contrast to [41], we take VA(v∗, ρ) dependent on the actual speed v∗,
in order to preserve the bounds of the acceleration, see [53]. Potentially, one can
consider the case in which the desired speed VA(v∗, ρ) depends also on the density of
vehicles ρ, see Section 5.4.1;

• ∆vB, instead, is the jump of velocity in the braking interaction. As discussed for
∆vA(v∗, ρ), we consider

∆vB(v∗, u, ρ) := v∗ − VB(u, ρ).

The quantity VB(u, ρ) ∈ [0, v∗) is the desired speed of a vehicle which is decreasing
its velocity v∗. Notice that, in contrast to the desired speed in acceleration, VB(u, ρ)
is not a function of v∗ but it depends on the macroscopic flux, in particular on the
local density ρ and on the mean speed u. In fact, in the braking scenario, the desired
speed is mainly influenced by the conditions of the traffic flow. For instance, let us
consider the case in which a driver bumps into a jam. Initially the driver travels with
a velocity larger than the the speed of the flow in front of him, i.e. v∗ � u. Then, the
driver must brake and adjust his speed to the traffic condition ahead independently
of the value of his actual velocity v∗. Therefore we expect that the jump of velocity
∆vB(v∗, u, ρ) is greater when the difference between the actual speed and the mean
speed is larger, as for instance in [41];

• ξ is a random variable with given distribution η(ξ), having zero mean and variance
σ2. The presence of ξ allows one to include a noise term proportional to the velocity
jump. From the modeling point of view, the noise term is introduced in order to
consider the fact that drivers are not able to estimate and to reach precisely the
desired speed after acceleration and braking, as prescribed in (5.1);

• ε ∈ (0, 1) is a deterministic and dimensionless parameter which models the time
scaling. We notice that for ε→ 0 we have v → v∗ for both v∗ < u and v∗ > u. This
means that ε controls also the strength of the microscopic interactions;

• P (ρ) is the probability of accelerating taken as a decreasing function of the local
density ρ, as discussed in Section 2.3.2. It allows one to define the post-interaction
speeds as functions of the density. Thus, the post-interaction speed v defined by the
rules (5.1) is not deterministically fixed. Although several laws of the probability
function P (ρ) can be taken into account in order to better fix experimental data, see
e.g. [74] or Section 4.4, we will consider the simplest choice

P (ρ) = 1− ρ

ρmax
, (5.2)

123



5. Multivalued fundamental diagrams of traffic flow in the kinetic
Fokker-Planck limit

which corresponds to (2.9) with α = γ = 1 and where ρmax is the maximum density
taken as the maximum number of vehicles per unit length in bumper-to-bumper
conditions;

• QA(ρ) and QB(ρ) are functions of the density ρ which modulate the variation of the
velocity due to the noise term. In particular, we assume that the uncertainty in
accelerating and braking vanishes in free road and jammed conditions, namely when
vehicles tend to travel at the maximum speed or to stop, respectively. From now on,
we will always take

QA(ρ) = P, QB(ρ) = 1− P. (5.3)

These simple choices allow one to simplify the microscopic model (5.1) and at the
same time they reproduce realistic macroscopic behaviors of traffic flow, see Sec-
tion 5.4.

Let us illustrate the model considering a few typical cases. Let ρ ≈ ρmax, namely let us
suppose that the road is almost congested. Then P (ρ) ≈ 0 and the second term in (5.1a)
vanishes. Since QA(ρ) ≈ 0 when ρ ≈ ρmax, it results v → v∗ if v∗ < u. Thus vehicles
tend to keep their velocities even if they are slower than the speed of traffic as the road
becomes congested. In contrast, if v∗ > u, the post-interaction speed v is less than the
pre-interaction speed v∗, see (5.1b), thus fast vehicles reduce the velocity in order to reach
the desired speed VB(u, ρ). On the contrary, if ρ ≈ 0 then P (ρ) ≈ 1, i.e. the probability of
accelerating becomes larger as the road becomes free. Therefore, using the rules (5.1), the
post-interaction speed v is greater than v∗ if v∗ < u, namely slow vehicles increase their
velocity in order to reach the desired speed VA(v∗, ρ). Conversely, v → v∗ in the opposite
case v∗ > u, i.e. fast vehicles tend to keep their high speed.

Using definitions (5.3), the microscopic interaction rules (5.1) can be written as

v = v∗ +
√
ε P (ρ) ∆vA(v∗, ρ)

(√
ε P (ρ) + ξ

)
, if v∗ < u (5.4a)

v = v∗ −
√
ε (1− P (ρ)) ∆vB(v∗, u, ρ)

(√
ε (1− P (ρ)) + ξ

)
, if v∗ > u (5.4b)

It is clear that the above expressions are defined by including two levels of stochasticity.
The first one is modeled by the terms at the right-hand side of equations (5.4) that do
not involve the random variable ξ. These terms concern the non-deterministic outcome of
the vehicle interactions and which give rise to an average post-interaction speed depending
on the probability of accelerating. The second level of stochasticity is instead modeled by
the terms in (5.4) that involve the random variable ξ. These terms perturb the average
post-interaction speed as a result of the unpredictability of the individual behavior of the
drivers.

Remark 5.3 (Bounded speeds). We expect that the post-interaction speed v is
such that v ∈ [v∗, VA] when accelerating (i.e. v∗ < u) and v ∈ [VB, v∗] when braking (i.e.
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v∗ > u). We can show that this is indeed guaranteed by making suitable assumptions on
the random variable ξ. For the equation (5.4a) we can write

v = v∗(1− εP −
√
εPξ) + VA(εP +

√
εPξ).

Thus v is a convex combination of the pre-interaction velocity v∗ and of the desired speed
VA if and only if

− εP√
εP
≤ ξ ≤ 1− εP√

εP
.

Instead, in the case (5.4b) we can write

v ≤ v∗(1− ε(1− P ) +
√
ε(1− P )ξ) + VB(ε(1− P )−

√
ε(1− P )ξ).

Thus v results again in a convex combination of the pre-interaction velocity v∗ and of the
desired speed VB if and only if

ε(1− P )− 1√
ε(1− P )

≤ ξ ≤ ε(1− P )√
ε(1− P )

.

Finally, the two bounds are simultaneously preserved if

max

− εP√
εP
,
ε(1− P )− 1√
ε(1− P )

 ≤ ξ ≤ min

1− εP√
εP

,
ε(1− P )√
ε(1− P )

 .
Since in the sequel we will be interested in the behavior of the model for small values of ε,
then in the limit we can allow |ξ| ∈ [0,+∞). However, observe that the post-interaction
speeds are again bounded because v → v∗ for ε→ 0.
The above bounds do not preserve in principle that ξ has zero mean. Nevertheless, bounds
satisfying this request can be easily obtained. For instance, in the simple case ε = 1,
straightforward computations lead to the following bounds:

|ξ| ≤ 1− P√
P

, if P ≥ 1/2 or |ξ| ≤ P√
1− P

, if P < 1/2

which ensure that ξ has zero mean.

5.2.2 Comparison with other models
The interaction rules prescribed in (5.4) can be obtained as a generalization of the

stochastic interaction rules given in [75] or in Section 3.2.1, see the case of the quantized
acceleration. There the post-interaction speed is given by

v =
{
VA with probability P , v∗ with probability 1− P , if v∗ < v∗ (5.5a)
v∗ with probability P , VB with probability 1− P , if v∗ > v∗ (5.5b)

125



5. Multivalued fundamental diagrams of traffic flow in the kinetic
Fokker-Planck limit

where v∗ is the microscopic velocity of the leading vehicle. In fact, in the previous chapters,
we have considered binary interactions in which a vehicle first compares its velocity v∗ with
the velocity v∗ of the vehicle ahead, and then decides in probability how to change its speed.
Since in the present framework we are interested in mean field interactions, v∗ is replaced
by the macroscopic speed u and, apart from the additional noise term ξ and the scaling
factor ε, the rules (5.4) can be indeed recovered as mean speed of the rules (5.5a)-(5.5b).

Notice that (5.5a)-(5.5b) correspond to the so-called δ model in [75] and in Chapter 3,
which describes the situation of instantaneous change of velocity produced by jumps in
velocity, from v∗ to VA (acceleration) or to VB (braking). Clearly, more refined models are
present in the literature, see e.g. [48]. Also in [75] and in Chapter 3 a less simplistic model
is considered, in which the output speed is uniformly distributed over a bounded range
of velocities, the so-called χ model in Section 3.2.1. However, looking at the fundamental
diagrams of traffic, it is proved that the essential information at equilibrium is already
caught by the δ model.

This fact can be also mathematically investigated by computing the evolution equation
for the macroscopic speed. In fact, assuming mean field interactions (in the sense specified
above), the model introduced in [75] and in Chapter 3 specializes as

∂tf(t, v) = ρ
∫ Vmax

0
A(v∗ → v|u; ρ)f(t, v∗)dv∗ − ρf(t, v). (5.6)

In fact, noticing that A(v∗ → v|u; ρ) does not depend on v∗, the above equation can be
obtained starting from (3.2) (with η = 1) by explicating

∫
V f(t, v∗)dv∗ = ρ. The transition

probability A(v∗ → v|u; ρ) models the stochastic microscopic interaction rules. It writes as

A(v∗ → v|u; ρ) =

P Acc(v) + (1− P )δv∗(v), if v∗ < u

Pδv∗(v) + (1− P ) Brak(v), if v∗ > u

where Acc and Brak are probability densities prescribing the speed after acceleration and
braking, respectively. In the δ model (see (3.3)) it results

Acc(v) = δVA(v), Brak(v) = δVB(v) (5.7)

while for the χ model (see (3.4)) one has

Acc(v) = χ[v∗,VA](v)
VA − v∗

, Brak(v) = χ[VB ,v∗](v)
v∗ − VB

. (5.8)

Substituting the explicit expression of A(v∗ → v|u; ρ) in (5.6), multiplying for v and
integrating over the velocity space V , we find the evolution equation for the macroscopic
speed. In particular, for the choice (5.7) we get

d
dtu(t) = P

∫ u

0
(VA − v∗)f(t, v∗)dv∗ + (1− P )

∫ u

0
(v∗ − VB)f(t, v∗)dv∗
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while for the choice (5.8) we obtain

d
dtu(t) = 1

2

{
P
∫ u

0
(VA − v∗)f(t, v∗)dv∗ + (1− P )

∫ u

0
(v∗ − VB)f(t, v∗)dv∗

}
.

We notice that the two differential equations for u differ only in a multiplicative constant.
This means that the steady state of the macroscopic speed does not depend on the specific
choice, either (5.7) or (5.8), of the probability densities Acc and Brak. In fact only the
relaxation rate towards the equilibrium is influenced by the presence of the multiplicative
factor.

The previous considerations justify the choice of the simpler δ model as a starting
point for the derivation of the interaction rules (5.4). However, notice that in the present
framework we include also the noise term, accounting for output speeds which are not
precisely determined.

Remark 5.4. We notice that the assumption of mean field interactions leads to a
linear collision operator with respect to the kinetic distribution f , see equation (5.6). In
contrast, the quadratic collision operator, characterizing the model introduced in Chap-
ter 3, is due to the choice of binary interactions which justify the presence of the product
between the kinetic distributions of the candidate and the field vehicles, see equation (3.2).

The microscopic interaction rules given in (5.4) are very similar to those chosen in [41].
There the post-interaction speed are given by

v = v∗ + A (VA − v∗) + ν(v∗) (VA − v∗)κ ξ, if v∗ < u (5.9a)
v = v∗ −B (v∗ − VB) + ν(v∗) (v∗ − VB)κ ξ, if v∗ > u. (5.9b)

where κ ≥ 1 is an exponent that calibrates the dependence of the noise on the brak-
ing/acceleration dynamics and 0 ≤ ν(v∗) ≤ 1 is a function that vanishes at the extreme
values of the velocity.

However, some important differences are introduced in the present work. In fact, in (5.9)
the jumps of velocity modeled by the second terms of the right-hand side are fixed since they
do not depend on the level of congestion of the traffic. Moreover, these jumps are modulated
by two non-negative constants A,B ∈ [0, 1] controlling the strength of the interactions,
which, however, do not play the role of the time-scaling parameters. Therefore, when a
time scaling is applied, the authors need to make assumptions on the way in which the
ratio of these parameters behaves in the grazing collision limit. In this way, they produce
some arbitrary constants which are not actually model parameters and they use them in
order to recover some Fokker-Planck model already studied in the literature.

5.2.3 Derivation of the Boltzmann equation with the microscopic
interaction rules (5.4)

As mentioned in Section 5.1, here we recover the Fokker-Planck equation as a limit of a
Boltzmann model for traffic flow with the aim of making the study of stationary solutions
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and of fundamental diagrams amenable to analysis. To this end, it is useful to derive
preliminarily a weak form of the Boltzmann equation.

The derivation of a general Boltzmann-type equation for the case of binary interactions
whose post-interaction states are influenced by random variables is given e.g in [66, Chap.
1, Sect. 1.4] and in [40] for traffic flow models. However, since in the present framework
we deal with mean field interactions, we follow a different approach based on a formulation
similar to (5.6).

For the post-interaction rules (5.4) the transition probability is simply

A(v∗ → w|u; ρ) = δv(w),

where v is given case-wise by either (5.4a) or (5.4b) and includes also the random variable
ξ.

Recalling that we are considering mean field microscopic interactions, the evolution
equation for the kinetic distribution f becomes then

∂tf(t, w) = η̃
∫ +∞

−∞

∫ Vmax

0
A(v∗ → w|u; ρ)f(t, v∗)dv∗η(ξ)dξ − η̃f(t, w), (5.10)

where η̃−1 has dimension of time and, henceforth, since we consider the spatially homoge-
neous model, without loss of generality we will take η̃ = 1.

To pass to the weak form we multiply equation (5.10) by a test function φ ∈ C(V) and
integrate over V :

d
dt

∫ Vmax

0
φ(w)f(t, w)dw =

〈∫ Vmax

0
(φ(v)− φ(v∗))f(t, v∗)dv∗

〉
(5.11)

where the operator 〈·〉 denotes the mean with respect to the distribution η, namely

〈g〉 =
∫ +∞

−∞
g(ξ)η(ξ)dξ.

From (5.11) it is clear that φ(w) = 1 is a collision invariant which guarantees the
conservation of the total number of vehicles. Moreover, it represents the only conservation
property satisfied by the kinetic equation, as usual in a traffic flow model.

Synchronized flow

If we consider φ(w) = w in (5.11) and we divide by the density ρ we can recover the
evolution equation for the macroscopic speed:

d
dtu(t) = 1

ρ

〈∫ Vmax

0
(v − v∗)f(t, v∗)dv∗

〉
.

Using the microscopic rules (5.4) to express the post-interaction speed v, we get

d
dtu(t) = 1

ρ

∫ u

0
εP∆vAf(t, v∗)dv∗ −

1
ρ

∫ Vmax

u
ε(1− P )∆vBf(t, v∗)dv∗, (5.12)

128



5. Multivalued fundamental diagrams of traffic flow in the kinetic
Fokker-Planck limit

5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time

M
ac

ro
sc

op
ic

 s
pe

ed
 u

 

 

ρ=0.2, u(0)=0.5

ρ=0.2, u(0)=0.6779

ρ=0.2, u(0)=0.7080

ρ=0.8, u(0)=0.5

ρ=0.8, u(0)=0.3223

ρ=0.8, u(0)=0.2925

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4

velocity space

N
um

be
r 

of
 a

ge
nt

s

 

 

u∞=0.6779

u∞=0.7080

u∞=0.7383

u∞=0.3223

u∞=0.2925

u∞=0.2626

Figure 5.1: Left: evolution towards equilibrium of the macroscopic speed u starting from different initial
conditions. Right: distribution of the microscopic velocities at equilibrium.

where we have used the fact that the random variable ξ has zero mean. Suppose that
the desired speeds VA and VB do not depend on the pre-interaction velocity v∗ and take,
as assumed for instance in [41], VA = VB = u. In this case ∆vA = −∆vB and using
equation (5.12) a straightforward computation provides

d
dtu(t) = − ε

2ρ(1− 2P )
∫ Vmax

0
|u− v∗| f(t, v∗)dv∗. (5.13)

Observe that d
dtu(t) = 0 if and only if f(v) = ρδu(v) which gives thus a steady solution

corresponding to the phenomenon of synchronized traffic flow, in which all vehicles travel
at the same speed u.

Moreover, notice that d
dtu(t) > 0 if P > 1/2, which means that u is increasing, i.e.

u → Vmax, until f(v) = ρδu(v). While, if P < 1/2, d
dtu(t) < 0, which means that u is

decreasing, i.e. u → 0, until f(v) = ρδu(v). Therefore the sign of d
dtu(t) is defined by the

density ρ at initial time while the equilibrium value of the speed depends also on the initial
condition u(0). We stress that this analysis provides information only on the structure of
the steady state of the kinetic distribution f but the macroscopic equation (5.13) for the
average speed u is not sufficient by itself to compute the equilibrium value of u.

This aspect is also numerically investigated in Figure 5.1 in which we propose a DSMC
(Direct Simulation Monte Carlo) simulation for the kinetic equation (5.10) with the mi-
croscopic rules (5.4) taking VA = VB = u. In particular, as in several kinetic models, we
use the Nanbu-like asymptotic method [8] which we reformulate in Algorithm 1 for the
model (5.10)-(5.4). This approach consists in using a probabilistic interpretation of the
Boltzmann-type kinetic model. In fact, let

G[f ](t, w) =
∫ +∞

−∞

∫ Vmax

0
A(v∗ → w|u; ρ)f(t, v∗)dv∗η(ξ)dξ,

then we can write the model (5.10) as
∂tf(t, w) = η̃G[f ](t, w)− η̃f(t, w)
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where, without loss of generality, we assume that all the quantities, as the maximum speed
and the density, are normalized and f is such that

∫
V f(t, w)dw = 1. Therefore, f is

nothing but the kinetic distribution scaled with ρ and the fraction of vehicles is recovered
by computing ρf(t, w). Now consider a time interval [0, Tmax] discretized in M intervals of
size ∆t and let fn be the approximation of f(tn = n∆t, w). Then, for a small time step
∆t we get

fn+1 − fn

∆t = η̃G[fn](t, w)− η̃fn

from which we obtain the update of the kinetic functions as in the forward Euler scheme:

fn+1 = (1− η̃∆t)fn + η̃∆tG[fn](t, w) (5.14)

where, since fn is a probability density and thanks to mass conservation, also G[fn](t, w)
is a probability density. Taking η̃∆t ≤ 1 then also the update fn+1 is a probability
density, since it is a convex combination of probability densities. From a probabilistic
interpretation, vehicles will not collide with probability 1 − η̃∆t and it will interact with
probability η̃∆t, according to the collision law described by A(v∗ → v|u(t); ρ). Recall that
η̃−1 has the dimension of time, thus 1 − η̃∆t has sense. Since our aim is the study of the
asymptotic state arising from the microscopic interactions, the natural choice is to take
∆t = 1

η̃
.

For further details on binary interaction methods for kinetic equations see e.g. the
paper [2] on microscopic models of flocking and swarming or the paper [40] on traffic flow
models or the book [66].

In Figure 5.1, Algorithm 1 is applied with N = 20000 samples and M = 40 time steps.
In the left panel we show the evolution towards equilibrium of the macroscopic speed u
for two values of the density of vehicles. Precisely, the blue lines are referred to ρ = 0.2,
and thus P = 0.8 using the definition (5.2), while the red lines are referred to ρ = 0.8,
and thus P = 0.2. We use different hatchings for the lines in order to mark the evolution
obtained with different starting values of the mean speed. We notice that we find different
equilibrium speeds depending on the initial condition u(0) while the trend is influenced by
the value of P . In fact, in each case, if P > 1/2 (resp. P < 1/2), the mean speed increases
(resp. decreases), see equation (5.13), until it reaches the equilibrium value u∞ which is
function of u(0). Thus, as usual, the stationary mean speed can be computed by using
the solution of the kinetic model while the macroscopic equation (5.13) is not sufficient to
determine u∞.

For instance, focus on the case P = 0.8. The evolution marked with the solid line is
obtained by sampling the particles from a uniform distribution on [0, 1] at initial time.
Thus the initial value of the mean speed u is u(0) ≈ 0.5. Since P > 1/2, the speed u
increases during time evolution until the equilibrium value u∞ ≈ 0.6779. This value is
used as initial condition of the evolution marked with the dashed line. The trend is again
increasing, since P > 1/2, and we obtain a different equilibrium value u∞ ≈ 0.7080. The
same procedure is applied in order to compute the evolution marked with the dotted line
and similar considerations hold for the case P = 0.2.
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Algorithm 1 Nanbu algorithm for the model (5.10)-(5.4) with VA = VB = u and ε = 1.
1: Take N samples of the microscopic velocities v0

j , j = 1, . . . , N from the initial density
f 0(v);

2: fix ρ0 being the initial density of vehicles and thus the probability of changing velocity
P ;

3: for n = 0 to M do
4: compute the macroscopic speed un = 1

N

∑N
j=1 v

i
j;

5: for j = 1 to N do
6: if P ≥ 1/2 then
7: sample ξ from a zero mean distribution η living on

[
−1−P√

P
, 1−P√

P

]
;

8: else
9: sample ξ from a zero mean distribution η living on

[
− P√

1−P ,
P√
1−P

]
;

10: end if
11: if vnj ≤ un then
12: compute vn+1

j = vnj +
√
P (u− vnj )

(√
P + ξ

)
;

13: else
14: compute vn+1

j = vnj −
√

1− P (vnj − u)
(√

1− P + ξ
)
.

15: end if
16: end for
17: end for

Finally, in the right panel of Figure 5.1 we show that all the equilibrium values of the
mean speed are indeed reached when all vehicles travel at the same velocity, i.e. f(v) =
ρδu∞(v) being u∞ function of u(0).

Although we can say nothing on the uniqueness of the synchronized steady solutions,
we emphasize that this situation can occur at each density, while in experimental studies
it occurs only for certain values of ρ, see e.g. [46]. For this reason, we will not analyze
deeply this aspect in the following but we will show that this solution is preserved by the
Fokker-Planck approximation.

5.3 Fokker-Planck approximation
The main drawback of a Boltzmann model is the complexity of the integral collision

operator which makes the investigation of steady states difficult. Observe that the explicit
knowledge of the asymptotic distribution is crucial both for computing the diagrams of
traffic without expensive numerical simulations and for developing closure laws for macro-
scopic model. In fact, a kinetic model provides quite naturally speed-density relations
arising from the microscopic interaction rules among the vehicles rather than from intu-
itive considerations.

In order to obtain simpler kinetic models, the goal is to replace the integral operator
with differential operators. To this end, starting from the Boltzmann model (5.11) we
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derive a Fokker-Planck model using a technique similar to the one introduced for instance
in [21, 22, 67, 84] and already used in [41] for non-symmetric interaction rules, or in [65]
for gas-dynamics and in [81] for opinion formation. However, as discussed at the end of
Section 5.2.2, here, in contrast with [41], the interaction rules (5.4) allow us to simplify the
procedure of the grazing collision limit avoiding the definition of several free parameters
and additional assumptions on the test function.

From now on, let us to consider φ ∈ C∞c (V). Starting from (5.11), we first scale the
time using the same parameter ε appearing in (5.4), setting

τ = εt, f(t, v) = f̃(τ, v).

For brevity, in the following we omit the use of the tilde and we indicate by f the scaled
distribution function. Then, braking up the integrals, equation (5.11) writes as

∂τ

∫ Vmax

0
φ(w)f(τ, w)dw = A+ B.

where

A = 1
ε

〈∫ u

0
(φ(v)− φ(v∗))f(τ, v∗)dv∗

〉
, B = 1

ε

〈∫ Vmax

u
(φ(v)− φ(v∗))f(τ, v∗)dv∗

〉
.

are the acceleration and braking collision kernels respectively. We study explicitly only
the case v∗ < u. Similar computations can be easily repeated for v∗ > u. Since for small
values of ε we have v ≈ v∗, we can compute the Taylor expansion up to second order of
φ(v)− φ(v∗) around v∗:

φ(v)− φ(v∗) = φ′(v∗)(v − v∗) + 1
2φ
′′(v∗)(v − v∗)2, v∗ ∈ (v∗, v)

with v defined in this case by (5.4a). Substituting v − v∗ in the above expansion, the
acceleration part of the collision kernel becomes

A =1
ε

〈∫ u

0
(εP∆vA +

√
εP∆vAξ)φ′(v∗)f(τ, v∗)dv∗

〉
+ 1

2ε

〈∫ u

0
(εP∆vA +

√
εP∆vAξ)2φ′′(v∗)f(τ, v∗)dv∗

〉
+ 1
ε
〈RA(f, η, φ)〉,

where

RA(f, η, φ) = 1
2

∫ u

0
(εP∆vA +

√
εP∆vAξ)2(φ′′(v∗)− φ′′(v∗))f(τ, v∗)dv∗

is the remaining term that vanishes as ε → 0. In fact, since φ is a smooth function, the
second derivative φ′′ is Lipschitz continuous, thus

∃L ≥ 0 s.t. |φ′′(v∗)− φ′′(v∗)| ≤ L |v∗ − v∗| .
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Recalling that v∗ ∈ (v∗, v), we have |v∗ − v∗| = θ |v − v∗| for some θ ∈ (0, 1). Therefore

L |v∗ − v∗| ≤ L |v − v∗| ≤ LC
√
ε

where C = C(max{∆vA}, ξmax) and

1
ε
|〈RA(f, η, φ)〉| ≤ 1

2ε

∫ +∞

−∞

∫ u

0
(v − v∗)2 |φ′′(v∗)− φ′′(v∗)| f(τ, v∗)dv∗η(ξ)dξ

≤ LCε 3
2

2ε

∫ +∞

−∞

∫ u

0
f(τ, v∗)dv∗η(ξ)dξ ε→0+

−−−→ 0.

Thus, computing the limit for ε→ 0, corresponding to a situation in which the interactions
are frequent but they produce only small variations in the output velocities, and using the
identities ∫ +∞

−∞
η(ξ)dξ = 1,

∫ +∞

−∞
ξη(ξ)dξ = 0,

∫ +∞

−∞
ξ2η(ξ)dξ = σ2,

we obtain

lim
ε→0
A = P

∫ u

0
∆vAφ′(v∗)f(τ, v∗)dv∗ + σ2P

2

∫ u

0
(∆vA)2 φ′′(v∗)f(τ, v∗)dv∗.

The same considerations apply also to the braking part of the collision kernel. In
particular, one verifies that RB(f, η, φ)→ 0 as ε→ 0 and

lim
ε→0
B =− (1− P )

∫ Vmax

u
∆vBφ′(v∗)f(τ, v∗)dv∗ + σ2(1− P )

2

∫ Vmax

u
(∆vB)2 φ′′(v∗)f(τ, v∗)dv∗.

Finally, in order to derive the strong formulation of the Fokker-Planck equation, we
write the weak form resulting from the grazing collision limit as

∂τ

∫ Vmax

0
φ(v)f(τ, v)dv =P

∫ Vmax

0
χ[0,u](v∗)φ′(v∗)∆vAf(τ, v∗)dv∗

− (1− P )
∫ Vmax

0
χ[u,Vmax](v∗)φ′(v∗)∆vBf(τ, v∗)dv∗

+ σ2P

2

∫ Vmax

0
χ[0,u](v∗)φ′′(v∗) (∆vA)2 f(τ, v∗)dv∗

+ σ2(1− P )
2

∫ Vmax

0
χ[u,Vmax](v∗)φ′′(v∗) (∆vB)2 f(τ, v∗)dv∗.

(5.15)

Integrating by parts each term of the right-hand side of (5.15) and using the fact that
φ(0) = φ(Vmax) = φ′(0) = φ′(Vmax) = 0, we recover the following strong form of the
Fokker-Planck equation:

∂τf(τ, v) =− ∂v
[
f(τ, v)

(
Pχ[0,u](v)∆vA − (1− P )χ[u,Vmax](v)∆vB

)]
+ σ2

2 ∂vv
[
f(τ, v)

(
Pχ[0,u](v) (∆vA)2 + (1− P )χ[u,Vmax](v) (∆vB)2

)] (5.16)

133



5. Multivalued fundamental diagrams of traffic flow in the kinetic
Fokker-Planck limit

as limit of the Boltzmann model (5.11) based on the microscopic rules (5.4). Observe
that (5.16) can be rewritten in the usual formulation of a Fokker-Planck-type model for
traffic flow:

∂τf(τ, v) + ∂v [f(τ, v)B(v, u, ρ)−D(v, u, ρ)∂vf(τ, v)] = 0, (5.17)
see for instance the prototype example introduced in [44]. In the present framework, the
acceleration/braking operator B(v, u, ρ) is

B(v, u, ρ) =Pχ[0,u](v)∆vA − (1− P )χ[u,Vmax](v)∆vB

− σ2

2 ∂v
(
Pχ[0,u](v) (∆vA)2 + (1− P )χ[u,Vmax](v) (∆vB)2

) (5.18)

while the diffusive operator D(v, u, ρ) is

D(v, u, ρ) = σ2

2
(
Pχ[0,u](v) (∆vA)2 + (1− P )χ[u,Vmax](v) (∆vB)2

)
. (5.19)

As we will see in Section 5.4, the stationary solution of (5.17) can be obtained avoiding
the explicit computation of derivatives of characteristic functions that may result in Dirac
functions.

Remark 5.5 (Boundary conditions). In contrast to the Boltzmann model, in
which ρ is automatically conserved, in the Fokker-Planck model the density remains con-
stant in time and thus it is an invariant of the model (5.17) if, for any choices of VA and
VB, the following boundary condition holds

f(τ, v)B(v, u, ρ)−D(v, u, ρ)∂vf(τ, v)
∣∣∣∣v=Vmax

v=0
= 0 (5.20)

at each time τ .

5.4 Fundamental diagrams
In this section, we investigate the fundamental diagrams of traffic flow resulting from

the Fokker-Planck model (5.17). Since we are interested in reproducing the features of
experimental diagrams, as the phase transition and the multivalued behavior, we show
that a particular choice of the desired speeds allows us to obtain diagrams which exhibit
the qualitative properties of data. Therefore, we will analyze the influence of microscopic
interactions on macroscopic dynamics.

As usual, macroscopic diagrams are recovered by computing the macroscopic quantities
as moments of the time-asymptotic kinetic distribution f∞(v). Notice that, using the
Fokker-Planck model, f∞(v) can be computed easily by solving an ordinary differential
equation. In fact, at the steady state, the time derivative of the distribution function
in (5.17) must be zero and thus we are led to the following homogeneous ODE:

f ′(v) = B(v, u, ρ)
D(v, u, ρ)f(v), v ∈ [0, Vmax] (5.21)
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whose solution can be written in form of exponentials once the cases v < u and v > u are
distinguished.

Using the separation of variables method, the time-asymptotic solution for general
jumps of velocity ∆vA and ∆vB can be computed explicitly substituting (5.18) and (5.19)
in (5.21) and it is given by

f∞(v) = f∞(u−)
(

∆vA(v, ρ)|v=u

∆vA(v, ρ)

)2

exp
(
− 2
σ2

∫ u

v

1
∆vA(s, ρ)ds

)
, if v < u (5.22a)

f∞(v) = f∞(u+)
(

∆vB(v, u, ρ)|v=u

∆vB(v, u, ρ)

)2

exp
(
− 2
σ2

∫ v

u

1
∆vB(s, u, ρ)ds

)
, if v > u (5.22b)

which indeed depends on three unknown parameters, the mean speed u, f∞(u−) and
f∞(u+). The latter two are the left and right limits, respectively, of f∞ at v = u, that
here we take as two integration constants.

Equivalently we can think of (5.22a) as parametrized by rf∞(u+), with

r = f∞(u−)
f∞(u+) . (5.23)

Notice that imposing the constraint on the zeroth moment (i.e. mass conservation) of the
distribution function

ρ =
∫ Vmax

0
f∞(v)dv (5.24)

is not sufficient to define uniquely both r and f∞(u+). In fact, the constraint (5.24) leads
to a single equation

f∞(u+)
(
rρ− + ρ+

)
= ρ

with two unknowns, where

ρ− =
∫ u

0
f∞(v)dv, ρ+ =

∫ Vmax

u
f∞(v)dv

are the partial densities of slow and fast vehicles (with respect to the mean speed). Thus,
we obtain a family of steady solutions and without loss of generality we assume that f∞
will be parametrized by the ratio r, so that

f∞(u−) = rρ

rρ− + ρ+ , f∞(u+) = ρ

rρ− + ρ+ . (5.25)

For r = 1 we obtain continuous asymptotic distributions at v = u, while for r 6= 1 we
allow for discontinuous distributions at v = u. This is the mathematical key which allows
us to recover multivalued diagrams of traffic as a result of the existence of a one-parameter
family of solutions. In fact, for each value of the ratio r we obtain a corresponding time-
asymptotic solution. Thus different values of r give different equilibrium speeds, for a fixed
density ρ. Usually, in the literature only continuous solutions were considered, see e.g. [44]
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in which a “small” multivalued behavior is obtained by means of the probability of lane
changing.

The equilibrium value of the macroscopic speed u is obtained by solving a non-linear
equation coming from the constraint on the first moment of the distribution function and
from (5.24) ∫ Vmax

0
vf∞(v)dv = ρu = u

∫ Vmax

0
f∞(v)dv. (5.26)

The identity (5.26) provides the nonlinear equation R(u) = 0, with

R(u) :=
∫ Vmax

0
(u− v)f∞(v)dv. (5.27)

Solving it for each value of the density in [0, ρmax] we find the speed at equilibrium which
defines therefore a relation between the density ρ and the mean speed u of the flow. Since
R(u) = 0 defines a nonlinear equation, in principle it might have zero or more than one
solution.

Finally, observe that without diffusion, namely if σ2 → 0, then the two exponentials
in (5.22) tend to 1. This means that the general steady state (5.22), and thus the equilib-
rium speed, is influenced only by the choice of the desired speed VA and VB. In fact, in
this case the microscopic rules (5.4) become purely deterministic, provided P (ρ).

Remark 5.6 (Synchronized flow). In Paragraph “Synchronized flow” in Sec-
tion 5.2.3 we have proved that the distribution function f(v) = ρδu(v) is a stationary so-
lution of the Boltzmann model (5.11) based on the interactions (5.4), when VA = VB = u.
This solution is preserved in the Fokker-Planck approximation. We use the weak form of
the model (5.17) in order to prove that f(v) = ρδu(v) is, in distributional sense, the trivial
steady state of the Fokker-Planck-type equation. In fact, assuming φ as a test function
with compact support in V , f(v) is a weak stationary solution if∫ Vmax

0
φ(v)∂v (f(v)B(v, u, ρ)−D(v, u, ρ)∂vf(v)) dv = 0.

Integrating by parts the left-hand side of the above equation we get

−
∫ Vmax

0
φ′(v)B(v, u, ρ)f(v)dv −

∫ Vmax

0
∂v(φ′(v)D(v, u, ρ))f(v)dv.

Taking f(v) = ρδu(v) we obtain∫ Vmax

0
φ′(v)B(v, u, ρ)f(v)dv = ρB(u, u, ρ) = 0∫ Vmax

0
∂v(φ′(v)D(v, u, ρ))f(v)dv = ρφ′′(v)D(u, u, ρ) + ρφ′(v)∂vD(v, u, ρ)|v=u = 0.
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In fact, the choice VA = VB = u leads to a degeneracy at v = u in the acceleration/braking
operator B, in the diffusion operator D and in its derivative, since

B(v, u, ρ) =P (u− v)χ[0,u](v)− (1− P )(v − u)χ[u,Vmax](v)− ∂vD(v, u, ρ)

∂vD(v, u, ρ) =σ
2

2
[
−P (u− v)2δu(v)− 2P (u− v)χ[0,u](v)

+(1− P )(v − u)2δu(v) + 2(1− P )(v − u)χ[u,Vmax](v)
]
.

Now, let us study two particular models obtained with different choices of the desired
speeds. In both cases, we formulate the explicit steady state and the expression of the
function R(u) which defines the equilibrium speed. We show that the two choices provide
meaningful diagrams of traffic (flux-density and speed-density relationships).

5.4.1 Case 1
Here we assume

VA = v + P (Vmax − v), VB = Pu. (5.28)
This means that, in acceleration, the desired speed is a certain velocity in [v, Vmax] depend-
ing on the value of the probability of accelerating P and thus on the density of vehicles.
Instead, when braking, the desired speed is a velocity in [0, u] and depends only on macro-
scopic quantities, as discussed in Section 5.2. With this choice and evaluating explicitly
the integrals appearing in (5.22), the asymptotic distribution f∞ becomes

f∞(v) = f∞(u−)
(
Vmax − u
Vmax − v

)cA
, if v < u (5.29a)

f∞(v) = f∞(u+)
(
u− Pu
v − Pu

)cB
, if v > u (5.29b)

where cA = 2
σ2P

+ 2 and cB = 2
σ2 + 2. In the sequel we consider P = 1− ρ. Recall that the

equilibrium speed is found by solving the constraint (5.26), which leads to the non-linear
equation R(u) = 0. For the steady solution (5.29) we have

R(u) =f∞(u−)
∫ u

0
(u− v)

(
Vmax − u
Vmax − v

)cA
dv︸ ︷︷ ︸

RA(u)

−f∞(u+)
∫ Vmax

u
(v − u)

(
u− Pu
v − Pu

)cB
dv︸ ︷︷ ︸

RB(u)

.

Computing explicitly both integrals we obtain

RA(u) = (Vmax − u)2

(cA − 2)(cA − 1) −
V 2−cA

max (Vmax − u)cA

(cA − 2)(cA − 1) −
uV 1−cA

max (Vmax − u)cA

cA − 1 (5.30a)

RB(u) = (u− Pu)2

(cB − 2)(cB − 1) −
(u− Pu)cB(Vmax − Pu)2−cB

(cB − 2)(cB − 1) (5.30b)

− (u− Pu)cB(Vmax − u)(Vmax − Pu)1−cB

(cB − 1)
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Figure 5.2: Diagrams of traffic using the desired speeds (5.28). We take r = 1 and we show the depen-
dence on the variance σ2.
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Figure 5.3: Left panels: diagrams of traffic using the desired speeds (5.28). We take σ2 = 0.25 and we
study the dependence on the parameter r which permits to find a region of scattered values.
Right panels: we plot the related equilibrium distributions for ρ = 0.3 (top) and ρ = 0.5
(bottom). The circles define the values f(v) for v → u− and v → u+.

Unfortunately, since R(0) = R(1) = 0 we cannot ensure that ∃u ∈ [0, Vmax] such that
R(u) = 0. However, numerically we observe that the nonlinear equation R(u) = 0 does
not provide more than one solution u ∈ (0, 1).

In Figure 5.2 and 5.3 we show the diagrams of traffic by varying the parameters of the
model. In particular, in Figure 5.2 we study the influence of σ2 on the speed and on the
flux. The diagrams are reproduced by considering only continuous steady state, namely
we fix r = 1 and then we compute f∞(u+) and f∞(u−) from equation (5.24) and (5.23).
The equilibrium values are obtained by solving numerically R(u) = 0 and the top plots
show the speed-density diagrams, while the bottom ones show the flux-density diagrams.
In all simulations we set ρmax = Vmax = 1. The probability of accelerating P is taken
as prescribed in (5.2). The variance σ2 seems to produce only small variations in the
equilibrium values of the speed. More precisely, it does not influence deeply the free and
the congested phase of traffic but only the values near the phase transition. Therefore,
acting on σ2 we are not able to reproduce a meaningful scattering of the flux values.
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In the left panels of Figure 5.3 we consider the diagrams obtained with σ2 = 0.25,
but modifying the parameter r, see equation (5.23). This allows us to take into account
different steady state according to the jump at v = u. The corresponding stationary
solutions appear in the right panels for two values of ρ = 0.3, 0.5. We point out that
now we obtain a more significant and accentuated dispersion of the values of macroscopic
quantities in a large range of density. Note that the dispersion is very small for low and
high densities, which is in accord with experimental surveys. The circles in the right plots
are in order to show the values of the steady states f∞(v, r) for v → u− and v → u+,
which coincide only for the black dotted distribution corresponding to the continuous case,
with r = 1. The role and the meaning of the parameter r will be further clarified in
Section 5.4.3.

Now, we focus on an important result which establishes connections between the macro-
scopic closures and the generic probability of accelerating P used at the microscopic level
in the present kinetic framework.

Theorem 5.7. – Let r = 1, that is consider only continuous asymptotic kinetic dis-
tributions (5.22). In the limit σ2 → 0, the kinetic model (5.17) with desired speeds (5.28)
provides the macroscopic closure

u(ρ) = VmaxP (ρ), 0 ≤ ρ ≤ ρmax,

where P : [0, ρmax]→ [0, 1] is a probability function.

Proof. In order to prove the statement we have to verify that u = VmaxP (ρ) is solution of
the non-linear equation R(u) = f∞(u−)RA(u)−f∞(u+)RB(u) for σ2 → 0, with RA(u) and
RB(u) defined in (5.30). Substituting u = VmaxP (ρ) in the expression of RA(u) we find

RA(VmaxP (ρ)) = V 2
max(1− P (ρ))2

(cA − 2)(cA − 1) −
V 2

max(1− P (ρ))cA

(cA − 2)(cA − 1) −
V 2

maxP (ρ)(1− P (ρ))cA

cA − 1 .

Since cA = 2
σ2P (ρ) + 2→∞ for each fixed ρ when σ2 → 0, we have that

V 2
max(1− P (ρ))2

(cA − 2)(cA − 1)
σ2→0−−−→ 0,

while
V 2

max(1− P (ρ))cA

(cA − 2)(cA − 1)
σ2→0−−−→ 0, V 2

maxP (ρ)(1− P (ρ))cA

cA − 1
σ2→0−−−→ 0

because 0 ≤ 1 − P (ρ) ≤ 1. Therefore, RA(VmaxP (ρ)) → 0 in the limit σ2 → 0. The same
considerations can be applied for the braking part. In fact, substituting u = VmaxP (ρ) in
RB(u) we find

RB(VmaxP (ρ)) =V
2

maxP (ρ)2(1− P (ρ))2

(cB − 1)(cB − 2) − V 2
maxP (ρ)cB(1− P (ρ))2(1 + P (ρ))2−cB

(cB − 1)(cB − 2)

− V 2
maxP (ρ)cB(1− P (ρ))2(1 + P (ρ))1−cB

cB − 1 .
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Figure 5.4: Left panels: diagrams of traffic obtained with the Greenshields’ closure law (blue data) and
the kinetic model with desired speeds VA = v+P (Vmax − v) and VB = Pu, fixing r = 1 and
σ2 = 0.013. Right panels: the equilibrium distributions for decreasing values of the variance
σ2 and ρ = 0.3 (top), ρ = 0.7 (bottom).

Recall that cB = 2
σ2 + 2 and thus cB → ∞ when σ2 → 0. While, since 1 ≤ 1 + P (ρ) ≤ 2

and 1 − cB < 0, one verifies that 1 + P (ρ)2−cB → 0 and 1 + P (ρ)1−cB → 0. These facts
guarantee that RB(VmaxP (ρ))→ 0, in the limit σ2 → 0 and the thesis is proved. �

The previous proposition ensures that an empirical closure law u(ρ) between the mean
speed and the density (see e.g. [78, Chap. 10.1]) can be derived from a kinetic approach
based on a microscopic model in which the rules are given by (5.4), with suitable choices
of the probability of accelerating P . In other words, in this framework the probability
P , which influences the microscopic behavior of drivers, can explain also the macroscopic
trend of the flow when σ2 → 0.

This relation is investigated numerically in Figure 5.4 for the Greenshields’ closure
frequently used in macroscopic traffic models, see [32]. Let ρmax = Vmax = 1. In the left
panels, we show the diagrams of traffic provided by the Greenshields’ law u(ρ) = 1 − ρ
(blu data) and by the Fokker-Planck model discussed in this paragraph (red data) with
σ2 = 0.013. The convergence rate of the equilibrium speeds to the relation u(ρ) = 1 − ρ
when σ2 → 0 is given in Table 5.1 in which the distance is computed as ‖(1− ρ)− u∞‖2,
where ρ is a vector of densities and u∞ is a vector of the equilibrium values found by solving
R(u) = 0 for each density in ρ. One can observe that the error goes to zero as σ2 → 0 with
sub-linear rate. In the right panels of Figure 5.4 we plot the continuous stationary kinetic
distributions (5.29) for ρ = 0.3 (top plot), ρ = 0.7 (bottom plot) and several decreasing
values of the variance σ2. As σ2 → 0, the equilibrium distributions approach a Dirac delta
centered in u(ρ) = 1− ρ, namely all vehicles travel with same speed at equilibrium. This
fact is not surprising because when σ2 → 0 the microscopic rules (5.4) become purely
deterministic and the diffusion operator in the Fokker-Planck equation (5.17) vanishes.
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Table 5.1: Table of the distance ‖(1− ρ)− u∞‖2 between the Greenshields’ equilibrium speeds 1 − ρ
and th equilibrium ones u∞ of the kinetic model with desired speeds (5.28).

σ2 Distance (2-norm) Rate
0.5 4.4872E − 01 -
0.25 1.8192E − 01 1.0672
0.125 9.2778E − 02 0.7131
0.0625 4.7283E − 02 0.7279
0.03125 2.3873E − 02 0.7491
0.015625 1.1995E − 02 0.7602

5.4.2 Case 2
Here we assume

VA = min{v + ∆v, Vmax}, VB = Pu. (5.31)

Thus we do not modify the desired speed in braking with respect the previous case. Instead,
in acceleration, we assume that the desired speed is not influenced by the congestion
level of the flow. More precisely, we model the situation in which, once a driver decides
to accelerate, the desired speed is reached with a fixed jump of velocity, so that VA is
v + ∆v if the resulting speed is smaller than Vmax, while VA = Vmax when Vmax − v < ∆v.
In this case the amplitude of the jump is less than ∆v. Observe that this choice was
introduced in [75] and in Section 3.2.1, see the case of the quantized acceleration that
is the δ model (3.3). The parameter ∆v would be a finite parameter which models the
physical velocity jump performed in acceleration. Clearly, it may depend on the mechanical
microscopic characteristics of vehicles, as in the multi-population framework (see [74] or
Chapter 4), but here we will assume that it is constant. With this choice and evaluating
explicitly the integrals in (5.22), the asymptotic distribution f∞ writes as

f∞(v) = f∞(u−)



exp
(
c−2
∆v (v − u)

)
, v < u < Vmax −∆v(

Vmax−u
∆v

)c
exp

(
c−2
∆v (v + ∆v − Vmax)

)
, v < Vmax −∆v < u(

Vmax−u
Vmax−v

)c
, Vmax −∆v < v < u

, if v < u

(5.32a)

f∞(v) = f∞(u+)
(
u− Pu
v − Pu

)c
, if v > u (5.32b)

where now c := cA = cB = 2
σ2 + 2. The kinetic distribution f∞ given in (5.32a) for

v < u can be computed by studying separately the cases min{v+ ∆v, Vmax} = v+ ∆v and
min{v + ∆v, Vmax} = Vmax.

Recall that the non-linear equation R(u) = 0 is determined by the constraint (5.26).
Since the steady distributions (5.29) and (5.32) differ only for v < u, RB(u) is already
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Figure 5.5: Macroscopic diagrams of traffic using the desired speeds (5.31). We take r = 1, ∆v = 0.2,
for several values of the variance σ2.

defined by (5.30b) and we need to recompute only RA(u). For the steady solution (5.32a),
RA is defined as

RA(u) = f∞(u−)



∫ u
0 (u− v) exp

(
c−2
∆v (v − u)

)
dv, if u < Vmax −∆v

∫ Vmax−∆v
0 (u− v)

(
Vmax−u

∆v

)c
exp

(
c−2
∆v (v + ∆v − Vmax)

)
dv

+
∫ u
Vmax−∆v(u− v)

(
Vmax−u
Vmax−v

)c
dv, if u > Vmax −∆v

.

Computing explicitly the integrals, we find

RA(u) =



(
∆v
c−2

)2 (
1− exp(− (c−2)

∆v u)
)
− ∆v

c−2u exp(− (c−2)
∆v u), if u < Vmax −∆v

∆v
c−2

(
Vmax−u

∆v

)c [
u+ ∆v − Vmax − u exp(− c−2

∆v (Vmax −∆v))
]

+
(

∆v
c−2

)2 (
Vmax−u

∆v

)c [
1− exp(− c−2

∆v (Vmax −∆v))
]

if u > Vmax −∆v

+ (Vmax−u)c
c−1

[
(Vmax − u−∆v)∆v1−c + (Vmax−u)2−c

c−2 − ∆v2−c

c−2

]
.

(5.33)
In Figure 5.5 we study the influence of σ2 on the mean speed and on the flux for r = 1,

that is allowing only continuous steady states. As already discussed, the equilibrium values
are obtained by solving numerically R(u) = 0. The top plots show the speed-density
diagrams, while at the bottom we have the flux-density diagrams. In all simulations we set
ρmax = Vmax = 1. The probability of accelerating P is taken as prescribed in (5.2). The
parameter ∆v is chosen as 0.2. As in Case 1, the variance σ2 seems to produce only small
variations in the equilibrium values of the macroscopic speed and of the flux. Only the
values near to the phase transition are affected, in particular they become sharper when
σ2 increases. Again, a multivalued behavior cannot be obtained by acting on σ2.

Next we consider the diagrams obtained with σ2 = 0.5 but depending on the parameter
r which allows one to take into account different steady states according to their regularity
at v = u, see equation (5.23). The right panels of Figure 5.6 show the stationary distribu-
tions for ρ = 0.3, 0.5. In the left panels of Figure 5.6, instead, we show that now we obtain
a more significant and accentuated dispersion of the equilibrium values in a larger range
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Figure 5.6: Left panels: macroscopic diagrams of traffic using the desired speeds (5.31). We take σ2 =
0.5, ∆v = 0.2 and we study the dependence on the parameter r. Right panels: equilibrium
distributions for ρ = 0.3 (top) and ρ = 0.5 (bottom). The circles define the values f(v) for
v → u− and v → u+.

of densities. The dispersion of data becomes small at low and high densities and this is in
accordance with experimental data.

We stress the fact that the kinetic theory allows us to explain both the theoretical and
the experimental fundamental diagrams in terms of microscopic rules. In fact, on the one
hand, with the the desired speeds (5.28) we reproduce the heuristic closure laws used in
the macroscopic modeling, as for instance the Greenshields’ law, see Proposition 5.7. On
the other hand, the desired speeds (5.31) allow us to reproduce well experimental data.

Let us focus first on the free-flow phase. This regime occurs at low densities, i.e when
the road is not congested, thus there is a large distance among the vehicles, the interactions
are rare and the velocity of the flow can be high. In Figure 5.6 we observe that the flux
increases nearly linearly with respect to the density of vehicles and the dispersion of the
data is small. Nevertheless, the average velocity of the vehicles does not coincide with the
maximum allowed speed. In fact, looking at the speed-density diagrams, we note that the
macroscopic speed decreases as the density increases. This means that the model does not
provide stationary solutions being Dirac delta centered in the maximum speed Vmax when
the density is less than a fixed value, see e.g. the quantized steady state distributions
analytically computed in [75] and in Section 3.3 for the δ model, see Theorem 3.4 and
Theorem 3.9. This result seems to be coherent with the experience because one tends
to travel at the maximum speed only in really free road conditions while the velocity is
reduced as the number of vehicles on the road increases. However, observe that, as we
expect, the decrease of the mean speed is not so fast to cause a decrease of the average
flux.

Now, let us focus on the congested phase of traffic. In this regime the road becomes
progressively jammed, thus the interactions among the vehicles are more frequent and
drivers tend to control their velocity with respect the speed of the flow which is forced to
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decrease due to the large number of vehicles. As a consequence, in Figure 5.6 we observe
that the flux decreases as the density of the vehicles increases because of a drastic reduction
of the mean speed. Moreover, there is a range of densities in which it is evident that
we can obtain scattered values in the flux-density plane. However, as the road becomes
jammed, the possible scattering reduces because the distance between the equilibrium
curves reduces, see for instance the speed-density diagram in Figure 5.6. This is consistent
with the daily experience of driving on highways, because in congested flow all vehicles
tend to travel at the same speed.

Finally, notice that, for increasing values of r, the diagrams provided by the present
kinetic model reproduce naturally the phenomenon of the capacity drop, that is the sharp
decrease of the flux across a density value. In fact, it is possible to identify the so-called
critical density in which there is a phase transition between the free and the congested
regimes.

The above descriptions are totally in agreement with the analysis of the experimental
diagrams provided in Section 2.2 or e.g. in [46, 76].

5.4.3 The role of r and comparisons with data
Since the aim of this chapter is to investigate the dependence between the structure of

fundamental diagrams and the microscopic dynamics, in this section we propose compar-
isons with experimental data. To this end, we also analyze the role of the free parameter
r, which parametrizes the family of equilibrium distributions f∞, and we show that it is
the key to reproduce multivalued diagrams.

We recall from equation (5.23) that r is not easily recognized as a physical parameter,
because it gives information on the regularity of f∞ at v = u. In fact, r is the ratio between
the two integration constants arising from the solution of the ODE (5.21). Therefore, we
need to give a recipe in order to choose the parameter and to understand whether we can
associate different values of r to the same flow.

To this end, in the following, although it seems that the scattering of data is due only
to a mathematical fact, we prove that r can actually be linked to observable/measurable
macroscopic quantities of the flow. Start from the quantity R(u) given in (5.27). We
observe that it is a function also of the density ρ and of the parameter r when they are
not fixed a priori. In fact, as discussed at the beginning of Section 5.4, applying the
constraint (5.24) and assuming that f∞ is parametrized by the ratio (5.23), we find the
expressions (5.25) of the two integration constants. Then, the quantity R given in (5.27)
can be written as

R(u, ρ, r) = rρ

rρ− + ρ+RA(u, ρ)− ρ

rρ− + ρ+RB(u, ρ)

where RA and RB are defined by (5.30a)-(5.30b) and (5.33)-(5.30b) when the desired speeds
are chosen as (5.28) and (5.31), respectively. By Implicit Function Theorem we have that
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R(u, ρ, r) = 0 defines implicitly a function

r = r(u, ρ) = RB(u, ρ)
RA(u, ρ) (5.34)

in each neighborhood of (u0, ρ0, r0) such that R(u0, ρ0, r0) = 0 provided that u0 6= 0,
u0 6= Vmax, ρ0 6= 0 because in this case one has ∂rR(u, ρ, r) 6= 0. The function (5.34) thus
establishes a link between the free parameter r and the macroscopic quantities of traffic.

Experimental data show several values of the mean speed u at equilibrium for the same
value of the density ρ, correspondingly the relation (5.34) states that, for any fixed ρ, there
exist more values of r related to the same flow. Therefore, the analytical origin of the
multivalued region is explained here by the presence of a family of equilibrium solutions
parametrized by r. The parameter r is the degree of freedom (in addition to ρ) being
necessary to equilibrium in order to describe the dispersion of data. In other words, we
can think that r synthesizes the different properties of the flow (as the composition of the
traffic flow or the structural characteristics of the road) which induce different macroscopic
dynamics for a given value of the density ρ. For instance, comparing this result with our
multi-population models [74, 76] (see Chapter 2 and Chapter 4), we can suppose that r
takes into account the heterogeneous composition of the vehicles on the road.

In Figure 5.7 we compare the diagrams obtained using the desired speeds (5.31) and
the experimental measurements provided on a USA highway by the Minnesota Department
of Transportation in 2003 (left panel), kindly granted by Seibold et al. [79], and in Viale
del Muro Torto in Rome (Italy) (right panel), see the review [70]. We focus only on the
modeling (5.31) of the desired speeds because the structure of the diagrams resulting from
this choice is totally in agreement with experimental data. In order to choose r using
the data we first individuate a density ρ and we select from the experimental diagram all
values of the flux q at equilibrium corresponding to the fixed ρ. Then we compute the
mean speed u = q/ρ, so that we can evaluate the relation (5.34) for each pair (u, ρ) in
order to determine r. Finally, we plot the corresponding “theoretical” diagrams.

More precisely, in both panels of Figure 5.7 we fix two values of the normalized den-
sity ρ = 0.2, 0.8, taking as maximum density in the right panel ρmax = 250 vehicles per
kilometer. For each of the two densities we consider three flux values, the maximum
q1 = max(q(ρ)), the minimum q2 = min(q(ρ)) and finally the mean value q3 = (q1 + q2)/2.
The intersections of the green dashed lines individuate the pairs of data (ρ = 0.2, qi),
i = 1, 2, 3, while the intersections of the blue dashed lines individuate the pairs of data
(ρ = 0.8, qi), i = 1, 2, 3. For each pair of data the normalized mean speed is computed
as u = q/(ρumax) where umax is the maximum speed and is approximated with the linear
interpolation of the free flow regime. Finally, the pairs (u, ρ) define three values of the
parameter r for each fixed density by means of equation (5.34). The green diagrams are
related to ρ = 0.2, while the blue diagrams are related to ρ = 0.8. We observe that there
is a remarkable correspondence between the “theoretical” and the experimental diagrams.
In fact, the equilibrium curves provided by the present kinetic model reproduce on the
whole the structure of the experimental data, included the scattering, both in the free and
the congested regime. This means that, in addition to explaining the dispersion with the
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variability of r, the microscopic model is already endowed with the other physical charac-
teristics of traffic, included the phase transition. We stress that we do not interpolate the
data. We have only one degree of freedom and the remaining features are explained by the
model itself.

Finally, in Figure 5.8 we show the relation holding between the parameter r and some
macroscopic quantities: precisely, the maximum value of the flux (blue dashed line), the
value of the critical density (red dash-dotted line), the maximum value of the density
(green solid line) and the slope of the free flow branch (black dotted line). We observe
an increasing monotone dependence which allows us to state that only a limited range of
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values for r can be admissible. In fact, for example, for larger r the critical density becomes
too high when compared to that provided by experimental data.
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Chapter 6

Conclusions, applications and
perspectives

6.1 Summary
This thesis was devoted to introducing mathematical models for traffic flow based on

kinetic theory. The starting aim was to propose a model which, on one hand, improves
some characteristics of already existing models and, on the other hand, is suitable for
mathematical investigations.

In details, the most important achievements can be summarized as follows (with refer-
ence to the scheme in Figure 1):

• Introduction of a multi-population kinetic model for traffic flow based
on the single-population model of Fermo and Tosin [26]: in Chapter 2, we
describe a kinetic model for vehicular traffic with a new structure which accounts for
the heterogeneous composition of traffic flow. Our approach differs from standard
kinetic models in that we consider two distribution functions describing two classes
of vehicles with different physical features, in this case the typical length of a vehicle
and its maximum speed.
As in [26], which inspired the present model, we have assumed a discrete space
of microscopic speeds and we have expressed vehicle interactions in terms of tran-
sition probabilities among the admissible speed classes. We have then used our
two-population kinetic model to derive the fundamental diagrams predicted by the
simulated dynamics. Even with a small number of microscopic speeds, such dia-
grams feature a structure closely resembling experimental data. In particular, they
are characterized by a marked phase transition: at low vehicle densities (free flow) the
flux increases almost linearly with small standard deviation, while beyond a critical
density the flow decreases taking widely scattered values (congested flow). We also
wish to note that the model is very simple: the complexity of a real flow is clustered
in the characteristics of only two distinct populations, with a very small number of
microscopic velocities.
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Several authors have dealt with this problem, cf. e.g., [26, 79]. In particular, in [26]
this phenomenon is explained by invoking the uncertainty of the drivers’ behavior in
terms of standard deviation of the statistical distribution of speeds at equilibrium.
However, such an approach predicts a zero standard deviation in the free phase of traf-
fic and furthermore interprets the scattered distribution of the data in the congested
phase as a consequence of the variability of the microscopic speeds at equilibrium.
In our case, instead, we have not only recovered the sharp phase transition, which
seems to result naturally from our kinetic approach, but we have also obtained the
scattered behavior at a genuinely macroscopic level as a consequence of the fact that
a given road occupancy can be obtained with different compositions of the mixture.
In other words, if the flux is given as a function of the number of vehicles crossing a
section of road in a unit time, then our model indicates that the scattering may be
due to the simultaneous presence of different types of vehicles. On the other hand,
in the congested phase the mean speed of the vehicles seems to depend only on the
degree of congestion of the road.
From a mathematical point of view, we have shown that our two-population model
satisfies an indifferentiability principle, which makes it consistent with the original
single-population model [26] when the particles composing the mixture share the same
physical characteristics (in our case the vehicle length and maximum speed). This
property, enforced in [3], is not trivial, and several kinetic models for gas mixtures
possess it only at equilibrium [33, 34]. Moreover, by means of an analysis of the
equilibria of the system we have also computed the critical density at which the
transition occurs showing that it depends on the probability of acceleration.
These results were published in [76].

• Introduction of a kinetic model based on a continuous-velocity space hav-
ing an explicit expression of the stationary distribution: since the hypothesis
of a lattice of speeds is artificial, and moreover the model [26] does not converge as
the lattice approaches a continuous distribution, in Chapter 3 we have studied two
kinetic models for vehicular traffic based on a continuous space of microscopic speeds.
We have assumed a Boltzmann-like framework describing binary interactions and we
have analyzed the space homogeneous case to study the asymptotic behavior of the
distribution function together with the resulting flux-density diagrams.
In contrast to the lattice-velocity approach of [26], these models are characterized by
a parameter ∆v, that has physical relevance and is related to the maximum speed
variation of a vehicle in a unit of time. The two models are defined by the transition
probability of gaining a certain velocity and they differ only in the modeling of the
acceleration interaction.
First of all we have studied the case in which the resulting speed after an acceleration
is obtained by a velocity jump from v∗ to v∗+∆v, where v∗ is the pre-interaction speed.
We have referred to this model as δ model and we have found a class of asymptotic
distributions which is atomic with respect to the velocity variable. In other words
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it is a linear combination of Dirac delta functions centered in a finite number of
velocities. The number T of delta functions contributing to the stable equilibrium
distribution is controlled by the acceleration parameter through the relation T =
Vmax/∆v. In other words, the velocities which really are important at equilibrium
are those spaced by ∆v. This result means that the number of discrete velocities
necessary to completely describe the equilibrium distribution function is implicitly
determined by the acceleration parameter ∆v. The main consequence of this result is
that there is a connection, at equilibrium, between the continuous-velocity δ model
and a discrete-velocity one which however, in contrast to the model [26], is more
robust because the distance of two adjacent velocities in the discrete lattice now has
a physical meaning. Observe that, in turn, this means that we are able to compute the
asymptotic distribution numerically with only few velocities in the grid, i.e. without
the need of integrating the kinetic equation in the limit. This fact makes the model
efficient from a numerical point of view.
Our numerical investigations have suggested also that the class of quantized equilib-
ria is unique. In fact, since we have discretized the kinetic equation using a piecewise
constant reconstruction, our scheme would be capable to compute absolutely contin-
uous steady states, but as a matter of fact only quantized ones were found.
Instead, in the second model (χ model) we have prescribed the acceleration interac-
tion in a way that is closer to the modeling given in [48], but again respecting the
physical relevance of ∆v. In fact, we have assumed that the output speed after accel-
eration is uniformly distributed over the range [v∗, v∗+∆v]. We have shown that the
χ model with acceleration parameter ∆v gives a macroscopic behavior similar to the
one provided by the simpler δ model with acceleration parameter ∆v/2, as it can be
seen by studying the macroscopic properties of the two models and comparing their
fundamental diagrams, notwithstanding the fact that the respective asymptotic dis-
tribution functions do not approach each other. Thus the χ model, despite the more
sophisticated description of interactions, gives the same macroscopic information of
the simpler and computationally much cheaper δ model, at least at equilibrium. We
have proved that both models provide a bounded macroscopic acceleration, studying
the evolution in time of the macroscopic velocity, and its relation with the parame-
ter ∆v.
The results obtained suggest that the quantized acceleration is sufficient for the
kinetic modeling of traffic. This is crucial to make kinetic modeling of complex
traffic flows amenable to computations. Note also that here the acceleration remains
controlled by ∆v. . Moreover the complete knowledge of the equilibrium distribution
is crucial to derive macroscopic models with a rich enough closure law resulting
naturally as consequence of the microscopic interactions. Thus, without the need of
prescribing heuristic speed-density relations, we obtain fundamental diagrams with
a phase transition and a capacity drop as those occurring in experimental data.
These results were proposed in the submitted paper [75].
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• Generalization of the δ model to a multi-population framework: the partic-
ular structure of the equilibrium distribution provided by the δ model in Chapter 3
allows one to generalize this framework to richer models which describe the complex
nature of traffic flow. For instance, in Chapter 4, we have considered the case of a
multi-population model, since we have observed in Chapter 2 that the description of
traffic flow as a mixture of more classes of vehicles allows us to reproduce multivalued
fundamental diagrams.
In fact, the aim was to refine the construction of the multi-population kinetic model
introduced in Chapter 2 based on a discrete space of microscopic speeds in order
to make it more amenable to a sound physical interpretation and to mathematical
analysis. We have generalized the single-population δ model, introduced in Chapter 3,
to the case of more than one class of vehicles. In particular, we have considered
continuous and bounded velocity spaces and we have introduced a fixed parameter
∆vp to account for the physical velocity jump undergone by a vehicle belonging to
the class p that increases its speed. The types of vehicles are characterized by few
microscopic features, again the typical length of a vehicle and the maximum speed.
After modeling the collision terms describing the acceleration and the slowing down
interactions, we have proved that the model satisfies the indifferentiability principle
at all times, which makes it consistent with the original δ model when all vehicles
have the same physical characteristics.
Next, taking advantage of the results provided in Chapter 3, we have discretized
the model in order to investigate numerically the asymptotic kinetic distributions.
Again, the structure of the equilibrium solutions of the δ models is formed: the
equilibrium distributions approach a series of delta functions centered on a finite
number of velocities. More precisely, these velocities are integer multiples of the
minimum minp ∆vp. It is worth stressing that the knowledge of the equilibrium
distributions is crucial for both the study of average characteristics of traffic, such
as the flux- and the speed-density relations, and for the derivation of macroscopic
equations from the kinetic approach, because the richer closure law provided by the
kinetic approach can be used. For instance, one can consider a system of first order
macroscopic equations describing the evolution of the density of each population, as
in [7] but using the closure provided by the kinetic model.
We have also studied the analytical properties of the system of ordinary differen-
tial equations resulting from the discretization of the continuous-velocity model. We
have proved the well-posedness of the Cauchy problem, in the sense that the solution
exists, is unique, depends continuously on the initial data, and moreover remains
non-negative and bounded by the initial mass. In addition to that, we have provided
the explicit formulas for the equilibrium distribution functions which define the fun-
damental diagrams. Equilibria are uniquely determined by the total initial mass and
the proportion of the vehicles of each class.
We notice that these results are very close to those of [74], but here we modified the
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interaction rules in order to make the model consistent with the δ model discussed
in Chapter 3 when populations have the same microscopic characteristics.

• Investigation of the multiscale dynamics in traffic flow: in Chapter 5, start-
ing from interaction rules derived from those introduced in [41] and in Chapter 3,
we have computed a Fokker-Planck model for traffic flow as the grazing collision
limit of a Boltzmann-type model. This approximation allows to retain the principal
part of the microscopic interactions while making the Boltzmann-type equation more
amenable to analytical investigations. In particular, we have aimed at analyzing the
influence of the microscopic interactions on the collective dynamics of the flow. To
this end, we have proposed microscopic behavioral rules affected by the macroscopic
average conditions of traffic, thereby establishing a feedback between the small and
the large scales of the phenomenon. The Fokker-Planck approximation allows to
compute easily the asymptotic time-distribution of the model for a general set of
rules which are completely defined once the desired speeds are chosen. In particular,
we have considered three different modeling of the desired speeds: the first one pre-
serves the synchronized traffic states (studied here also by means of a Monte-Carlo
simulation), the second one links the microscopic probability of accelerating to the
macroscopic relations (for example the Greenshields’ closure law [32]) and finally the
third one leads to fundamental diagrams which have the same qualitative properties
of experimental data.
The model permits also to reproduce the multivalued structure of experimental di-
agrams. The mathematical key allowing for the scattering of the flux values is the
existence of a one-parameter family of stationary distributions. We have shown that
the positive parameter which singles out one of the possible distributions has a strong
link with the macroscopic properties of the flow, in particular the density and the
mean speed of vehicles.
These results were proposed in the submitted paper [85].

6.2 Macroscopic model with kinetic closure
As already anticipated in the Introduction (see the scheme in Figure 1), the results

of this thesis permit to derive closure laws for macroscopic equations of vehicular traffic
which are not based on heuristic or empirical considerations. In fact, the equilibria of the
models proposed in this thesis can be written explicitly, and therefore we have a sort of
Maxwellian equilibrium distribution, which can be exploited to find a closure law at the
macroscopic level, moreover without the need of computing the evolution to equilibrium of
the kinetic model. Since the kinetic closure laws provide fundamental diagrams which have
remarkable correspondence with experimental data, we can use the results of this thesis to
propose a new macroscopic model, based on the “Maxwellian” distribution we have found
and we expect to obtain simulations which reproduce accurately the dynamics of traffic.
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Consider the case of a single population of vehicles and the following first order equation

∂tρ(t, x) + ∂x(ρu)(t, x) = 0, (6.1)

where, as usual, ρ, u and (ρu) are the density, the mean speed and the flux, respectively.
From Section 1.2 we know that equations of type (6.1) require to be closed with a relation
which prescribes the mean speed u as a function of the density ρ.

The knowledge of the analytical expression of the asymptotic distribution provided by
our kinetic models permits to assign the fundamental relations without using the heuristic
laws discussed in Section 1.2. In fact, in the kinetic theory, macroscopic diagrams arise
naturally from a statistical approach based on a detailed characterization of the microscopic
behaviors. Thus the closure can be directly derived by means of the time-asymptotic
distribution f∞ of the δ kinetic model introduced in Chapter 3 defining the following map:

ρ 7→ u(ρ) = 1
ρ

∫
V
vf∞(x, v)dv. (6.2)

We notice that the fundamental relations provided by our kinetic model have two main
properties:

1. they are continuous: in fact, from Theorem 3.9 it is clear that

lim
P→ 1

2
+

∫
V
vf∞(x, v)dv = lim

P→ 1
2
−

∫
V
vf∞(x, v)dv = ρcVmax,

where ρc is the density value such that P (ρc) = 1/2. Thus, there is no need to treat
the macroscopic model (6.1)-(6.2) with suitable techniques for conservation laws with
discontinuous fluxes;

2. the flux-density diagram is not convex: in fact, it is linear in the free flow regime
(i.e when ρ ≤ ρc) and it is convex in the congested regime (i.e when ρ > ρc), see the
two-phase fundamental diagrams provided in Section 3.5.

The non-convexity of the flux-density diagram represents the most interesting property
because it permits to obtain solutions different from those based on the classical closure
laws. In fact, when the flux is convex, the solution to a Riemann problem is always either a
shock or a rarefaction wave. In contrast, when the flux is not convex, the entropy solution
might involve both. In a general situation, if the flux has more inflection points, then
the solution might involve several shocks and rarefactions. In order to solve a Riemann
problem, we use the same considerations performed by Leveque [56]. However, see also
Bressan [12] for a more rigorous and detailed treatment. In fact, as investigated in [12, 56],
the solution of a Riemann problem can be easily determined from the graph of the flux
function by constructing the convex hull of the set

SRL =
{

(ρ, y) ∈ R2 : ρR < ρ < ρL, y < ρu(ρ)
}
, (6.3)
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Figure 6.1: Solution of Riemann problems in the cases ρR < ρL (left) and ρL < ρR (right). The shaded
area represent the convex hulls of the sets SRL and SLR, respectively

when the initial states are such that ρR < ρL. Otherwise, when ρL < ρR the convex hull
of the set

SLR =
{

(ρ, y) ∈ R2 : ρL < ρ < ρR, y > ρu(ρ)
}

(6.4)

has to be considered. Then, shock waves correspond to the straight line portions of the
boundary of the convex hulls which may not coincide with the flux function; while rarefac-
tion waves and contact discontinuities correspond to the portions of the boundary of the
convex hulls which coincide with the flux function.

To illustrate the phenomenon of the non-convexity of the flux function, in the following
we focus on two Riemann problems involving two physical situations in traffic flow.

Starting from a traffic light. In the left panel of Figure 6.1 we consider the Riemann
problem with initial states ρL = ρmax and ρR = 0 that represents the density of vehicles
on a road when a traffic light becomes green and vehicles in the queue can accelerate into
an empty road. Since ρR < ρL, the solution to the Riemann problem can be determined
by considering the convex hull of the set (6.3), that is the smallest convex set containing
the set defined by the flux function. The upper boundary of SRL follows the linear part of
the flux function up to (ρc, ρcu(ρc)), i.e. in the free-flow regime, and then is composed of a
straight line segment linking the point (ρc, ρcu(ρc)) to (ρmax, 0). Since the flux function is
linear for ρ ≤ ρc, the segment where the boundary of SRL follows the diagrams produces
a contact discontinuity propagating at the maximum speed of vehicles Vmax. In fact, from
the equilibrium distribution of the kinetic model it follows that the linear branch of the flux
function increases as ρVmax. Instead, the straight line of the boundary of SRL represents
a shock with negative speed. Thus, the solution is composed by two waves: a backward
propagating shock wave jumping from ρL to ρc and a contact discontinuity connecting ρc
to ρR. Thus the critical density ρc plays the role of the post-shock intermediate state.

In the top panels of Figure 6.2 we show the solution obtained solving numerically the
first order macroscopic equation with the Greenshields closure (left) and the Aw-Rascle
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Figure 6.2: Starting from a traffic light solution obtained with the LWR first order model [59, 77] (top
left), with the Aw and Rascle second order model [5] (top right) and with the macroscopic
first order model (6.1) using the kinetic closure (6.2) derived in this thesis (bottom right).
The bottom left panel shows the wave structure.

second order model (right), using a firs order finite volume scheme. While in the bottom
panels we show the characteristics (left) and the solution (right) provided by the model (6.1)
using the kinetic closure. We choose the initial states ρL = 0.9 and ρR = 0.1. The solution is
characterized by a shock wave followed by a contact discontinuity. In particular, the shock
wave would represent a sudden acceleration of vehicles when the traffic light becomes
green. We notice that the structure of this solution can be reproduced by Daganzo’s
closure [18], see Figure 1.1d. However, the lack of experimental data does not make possible
the validation of this type of solution.

Formation of a queue. We consider the Riemann problem with initial states 0 < ρL <
ρc < ρR < ρmax. The same idea of the previous case works but now we look instead at
the convex hull of the set of points above the flux function, see equation (6.4). According
to the values of ρL and ρR the convex hull construction can give three different solutions:
a single shock with positive speed, a single shock with negative speed, or a shock with
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Figure 6.3: Formation of a queue solution obtained with the LWR first order model [59, 77] (top left),
with the Aw and Rascle second order model [5] (top right) and with the macroscopic first
order model (6.1) using the kinetic closure (6.2) derived in this thesis (bottom right). The
bottom left panel shows the wave structure.

negative speed followed by a rarefaction wave. In the right panel of Figure 6.1 we show
the latter case in which the dashed line segment represents the shock linking ρL to the
intermediate state ρ∗, which is located at the point where the convex hull is tangent to the
flux function. In the region between ρ∗ and ρR, the solution is a rarefaction wave following
the flux function itself.

In the bottom panels of Figure 6.3 we show the characteristics (left) and the solution
(right) provided by the model (6.1) using the kinetic closure with initial data ρL = 0.2
and ρR = 0.9. The shock represents a sudden braking (when drivers perceive ahead the
congestion of the road), which then becomes weaker inducing the rarefaction wave. Again,
in the top panels we show the solution for the classical first and second order macroscopic
models, obtained with a first order finite volume scheme.

The above analysis can be easily applied in order to solve all possible Riemann problems
arising from equation (6.1) with the non-convex flux function derived from the map (6.2).
In Figure 6.4 we summarize all the possible cases.
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Figure 6.4: Solutions of Riemann problems. The shaded area represent the convex hulls.
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The numerical solutions of the macroscopic model with the kinetic closure (see the
bottom-right panels of Figure 6.2 and Figure 6.3) are computed with the one-dimensional
third order CWENO scheme [58]. In contrast to the WENO schemes [45, 80], the CWENO
methods are characterized by the uniform accuracy in the whole computational cell, which
makes them particularly suited for integrating balance laws. In this context, the CWENO
third order scheme is performed in order to reproduce well the wave structure of the
solutions, as for instance the contact discontinuity in the bottom-right panel in Figure 6.2.

We wish to stress that, in addition to traffic flow models, we have introduced CWENO
schemes of arbitrary order in [17], in which the analysis of very high order CWENO recon-
structions is proposed.

6.3 Future perspectives
In our opinion, this thesis and the previous section open up several research perspec-

tives.

Multi-population macroscopic model with kinetic closure. First of all, we notice
that the macroscopic equation (6.1), expressed for a single-population of vehicles, can be
generalized to the case of multiple populations, thus considering a system of first order
equations of the type

∂tρ
p(t, x) + ∂x(ρu)p(t, x) = 0, (6.5)

where the index p labels the different class of vehicles. In this case, one can consider
the closure derived from the multi-population kinetic model introduced in this thesis. We
recall that, as in the single-population case, we are able to compute also the analytical
expression of the equilibrium distributions in the case of multiple populations. Thus, the
closure law can be expressed explicitly and used for solving the macroscopic equation (6.5)
without the need of computing the steady-state of the kinetic model at each time. In this
context, comparisons with the multi-population macroscopic model of Benzoni-Gavage and
Colombo [7] can be performed.

Inhomogeneous kinetic models. The natural sequel of this work would be the ex-
tension of the single- and multi-population kinetic models proposed in this thesis to the
spatially inhomogeneous case. Compared to the spatially homogeneous case studied in
this thesis, this extension would allow to analyze non-equilibrium effects in the dynamics
of traffic, which for instance might shed light on the structure of shocks and contact discon-
tinuities exhibited by the solutions of the macroscopic Riemann problems studied above,
and the phenomenon of the stop&go waves. To this end, both numerical and modeling
difficulties have to be tackled.

We think that the study of inhomogeneous kinetic models is necessary because they are
able to simulate traffic dynamics out of equilibrium. We stress the fact that, in contrast,
macroscopic models reproduce traffic situations assuming that the flow is at equilibrium.
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Figure 6.5: Stop&go wave solution provided by our spatially inhomogeneous kinetic model.

This assumption may provide non-realistic phenomena, as for instance in the starting from
a traffic light considered in Section 6.2. In fact, everyday life experience suggests that the
contact discontinuity traveling with the maximum speed of cars should be replaced with a
rarefaction wave representing the weaker acceleration following the harder one close to the
traffic light. Moreover, we cannot expect that a first order equation is able to reproduce
the stop&go wave solution since the maximum principle holds. For these reasons, it would
be interesting to derive a spatially inhomogeneous kinetic model based on our modeling
of the collision term. This research perspective requires an efficient numerical method to
treat the possible stiffness. The backward wave propagation can be obtained rewriting
the collision term using non-local interactions, as in Klar and Wegener [49], or using flux
limiters in the convective term, as proposed by Fermo and Tosin [25].

We are currently working on the spatially inhomogeneous version of our single-population
kinetic model. In particular, the model is based on the splitting of the collision operator
in two terms. One describes the local interactions, taking place among vehicles located at
the same space position. Instead, the other one describes the non-local interaction and is
therefore characterized by the introduction of a parameter describing the physical visibility
distance. This parameter allows to model the realistic situation in which drivers react also
to the traffic condition ahead. Although this work is in progress, a preliminary analysis
seems to show that the model is able to reproduce the stop&go waves. For instance, see
Figure 6.5 in which we compute the numerical solution provided by our spatially inhomo-
geneous single-population kinetic model. At initial time the density is constant in space,
ρ(t = 0, x) = 0.6, but the center computational cell is characterized by the presence of
more slow vehicles, compared to the other cells. This situation produces a perturbation
in the flow of vehicles which, in turn, causes the generation of a classical stop&go wave
solution.

Multi-lane roads and road networks. Another possible and natural extension of
the kinetic models proposed in this thesis is the derivation of new models being able to
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describe traffic in multiple lane-roads or a network of roads, thus including also ramps and
intersections. These generalizations are crucial for forecasts of traffic flow. The modeling
challenge lies in keeping the computational cost of the kinetic model low. In the literature,
multilane models were built by considering several kinetic distributions, one for each lane,
see for instance [9, 50, 51, 60]. This choice increases the model complexity. We think that
the multi-population framework can be successfully used to consider multilane models
with a reduced computational cost. The modeling of lane changing might be neglected
and the presence of multiple lanes could be taken into account by using the notion of the
fraction of occupied space. In fact, one can assume that different classes of vehicles react
to different road occupancy depending on the number of lanes that they can occupy, taking
into account that some lanes are usually prohibited to certain populations of vehicles.

Multi-population Fokker-Planck models. Finally, concerning the Fokker-Planck model,
we think that the less demanding structure when compared to the full Boltzmann-type
model provides as a natural sequel the study of a multi-population model based on the
mean-field interaction rules prescribed in Chapter 5. In fact, in the approximation that
vehicles are affected only by the average properties of the flow, the binary interaction terms
of the Boltzmann equations are replaced by simpler mean-field terms for all populations of
vehicles. Thus, each equation contains only one collision operator and furthermore equa-
tions are coupled only through the macroscopic density ρ and the mean speed u, a fact
which permits to keep under control the complexity of the model. On the other hand, we
expect to obtain multivalued diagrams as a result of the heterogeneous composition of the
flow, as in Chapter 2 and in in Chapter 4, without allowing for discontinuous stationary
distributions.
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