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ABSTRACT
CP2K is an open source electronic structure and molecular dynamics software package to perform atomistic simulations of solid-state, liquid,
molecular, and biological systems. It is especially aimed at massively parallel and linear-scaling electronic structure methods and state-of-the-
art ab initio molecular dynamics simulations. Excellent performance for electronic structure calculations is achieved using novel algorithms
implemented for modern high-performance computing systems. This review revisits the main capabilities of CP2K to perform efficient and
accurate electronic structure simulations. The emphasis is put on density functional theory and multiple post–Hartree–Fock methods using
the Gaussian and plane wave approach and its augmented all-electron extension.

© 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0007045., s

I. INTRODUCTION
The geometric increase in the performance of computers over

the last few decades, together with advances in theoretical meth-
ods and applied mathematics, has established computational science
as an indispensable technique in chemistry, physics, and life and
materials sciences. In fact, computer simulations have been very
successful in explaining a large variety of new scientific phenom-
ena, interpret experimental measurements, predict materials prop-
erties, and even rationally design new systems. Therefore, conduct-
ing experiments in silico permits to investigate systems atomistically
that otherwise would be too difficult, expensive, or simply impossi-
ble to perform. However, the by far most rewarding outcome of such
simulations is the invaluable insights they provide into the atomistic
behavior and the dynamics. Therefore, electronic structure theory
based ab initio molecular dynamics (AIMD) can be thought of as a
computational microscope.1–3

The open source electronic structure and molecular dynam-
ics (MD) software package CP2K aims to provide a broad range
of computational methods and simulation approaches suitable for
extended condensed-phase systems. The latter is made possible
by combining efficient algorithms with excellent parallel scalabil-
ity to exploit modern high-performance computing architectures.
However, along with conducting efficient large-scale AIMD simu-
lations, CP2K provides a much broader range of capabilities, which
includes the possibility of choosing the most adequate approach
for a given problem and the flexibility of combining computational
methods.

The remainder of this paper is organized as follows: The Gaus-
sian and plane wave (GPW) approach to density functional theory
(DFT) is reviewed in Sec. II and before Hartree–Fock and beyond
Hartree–Fock methods are covered in Secs. III and IV, respec-
tively. Thereafter, constrained DFT (CDFT), density functional per-
turbation theory (DFPT), and time-dependent DFT (TD-DFT) are
described in Secs. V, VI, and VII, respectively. Sections VIII and XIII
are devoted to low-scaling eigenvalue solver based on sparse matrix
linear algebra using the distributed block compressed sparse row
(DBCSR) library. Conventional orthogonal localized orbitals, non-
orthogonal localized orbitals (NLMOs), absolutely localized molec-
ular orbitals (ALMOs), and compact localized molecular orbitals
(CLMOs) are discussed in Sec. IX to facilitate linear-scaling AIMD,
whose key concepts are detailed in Sec. X. Energy decomposition
and spectroscopic analysis methods are presented in Sec. XI, fol-
lowed by various embedding techniques, which are summarized in

Sec. XII. Interfaces to other programs and technical aspects of CP2K
are specified in Secs. XIV and XV, respectively.

II. GAUSSIAN AND PLANE WAVE METHOD
The electronic structure module QUICKSTEP

4,5 in CP2K can han-
dle a wide spectrum of methods and approaches. Semi-empirical
(SE) and tight-binding (TB) methods, orbital-free and Kohn–Sham
DFT (KS-DFT) and wavefunction-based correlation methods [e.g.,
second-order Møller–Plesset perturbation theory (MP2), direct-
random phase approximation (dRPA), and GW] all make use of
the same infrastructure of integral routines and optimization algo-
rithms. In this section, we give a brief overview of the methodology
that sets CP2K apart from most other electronic structure programs,
namely, its use of a plane wave (PW) auxiliary basis set within
a Gaussian orbital scheme. As many other programs, CP2K uses
contracted Gaussian basis sets g(r) to expand orbital functions

φ(r) =∑
u

du gu(r), (1)

where the contraction coefficients du are fixed and the primitive
Gaussians

g(r) = rl exp[−α(r − A)2
]Ylm(r − A) (2)

are centered at atomic positions. These functions are defined by the
exponent α, the spherical harmonics Y lm with angular momentum
(l, m), and the coordinates of its center A. The unique properties
of Gaussians, e.g., analytic integration or the product theorem, are
exploited in many programs. In CP2K, we make use of an additional
property of Gaussians, namely, that their Fourier transform is again
a Gaussian function, i.e.,

∫ exp[−αr2
] exp[−iG ⋅ r]dr = exp[−

G2

4α
]. (3)

This property is directly connected with the fact that integration of
Gaussian functions on equidistant grids shows exponential conver-
gence with grid spacing. In order to take advantage of this property,
we define, within a computational box or periodic unit cell, a set of
equidistant grid points

R = hN q. (4)

The three vectors a1, a2, and a3 define a computational box with a
3 × 3 matrix h = [a1, a2, a3] and a volume Ω = det h. Furthermore,
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N is a diagonal matrix with entries 1/Ns, where Ns is the number of
grid points along vector s = 1, 2, 3, whereas q is a vector of integers
ranging from 0 to Ns − 1. Reciprocal lattice vectors bi, defined by
bi ⋅ aj = 2πδij, can also be arranged into a 3 × 3 matrix [b1, b2, b3]

= 2π(ht
)
−1, which allows us to define reciprocal space vectors

G = 2π(ht
)
−1g, (5)

where g is a vector of integer values. Any function with periodic-
ity given by the lattice vectors and defined on the real-space points
R can be transformed into a reciprocal space representation by the
Fourier transform

f (G) =∑
R

f (R) exp[iG ⋅ R]. (6)

The accuracy of this expansion is given by the grid spacings or the
PW cutoff defining the largest vector G included in the sum.

In the GPW method,6 the equidistant grid, or equivalently the
PW expansion within the computational box, is used for an alter-
native representation of the electron density. In the KS method, the
electron density is defined by

n(r) =∑
μν

Pμνφμ(r)φν(r), (7)

where the density matrix P, with elements Pμν = ∑i ficμicνi, is cal-
culated from the orbital occupations fi and the orbital expansion
coefficients cμi of the common linear combination of atomic orbitals
Φi(r) = ∑μ cμiφμ(r). Therein, Φi(r) are the so-called molecular
orbitals (MOs) and φμ(r) are the atomic orbitals (AOs). In the PW
expansion, however, the density is given by

n(r) =∑
G

n(G) exp[iG ⋅ r]. (8)

The definitions given above allow us to calculate the expansion coef-
ficients n(G) from the density matrix Pμν and the basis functions
φμ(r). The dual representation of the density is used in the defi-
nition of the GPW-based KS energy expression (see Sec. II A) to
facilitate efficient and accurate algorithms for the electrostatic as
well as exchange and correlation energies. The efficient mapping Pμν
→ n(G) is achieved by using multigrid methods, optimal screening
in real-space, and the separability of Cartesian Gaussian functions
in orthogonal coordinates. Details of these algorithms that result in
a linear scaling algorithm with a small prefactor for the mapping is
described elsewhere.4–6

A. Kohn–Sham energy, forces, and stress tensor
The electronic KS energy functional7 for a molecular or crys-

talline system within the supercell or Γ-point approximation in the
GPW framework4–6 is defined as

E[P] = Ekin
[P] + Eext

[P] + EES
[nG] + EXC

[nG], (9)

where Ekin is the kinetic energy, Eext is the electronic interaction with
the ionic cores (see Sec. II B), EES is the total electrostatic (Coulomb)
energy, and EXC is the exchange-correlation (XC) energy. An exten-
sion of Eq. (9) to include a k-point sampling within the first Brillouin
zone is also available in CP2K. This implementation follows the

methods from Pisani,8 Kudin,9 and co-workers. The electrostatic
energy is calculated using an Ewald method.10 A total charge den-
sity is defined by adding Gaussian charge distributions of the form

nA
(r) = −

ZA

(Rc
A)

3 π
−3/2 exp

⎡
⎢
⎢
⎢
⎢
⎣

−(
r − A

Rc
A
)

2⎤
⎥
⎥
⎥
⎥
⎦

(10)

to the electronic charge distribution n(r). Therewith, Eq. (9) can be
rewritten as

E[P] =∑
μν

Pμν⟨φμ(r) ∣ −
1
2
∇

2 + Vext
(r) ∣ φν(r)⟩

+ 4πΩ∑
G

∣ntot(G)∣2

G2 + Eovrl − Eself

+
Ω

N1N2N3
∑
R

FXC[nG](R), (11)

where the self and overlap terms

Eself =∑
A

1
√

2π
Z2

A

Rc
A

, (12a)

Eovrl =∑
A,B

ZAZB

∣A − B∣
erfc

⎡
⎢
⎢
⎢
⎢
⎢
⎣

∣A − B∣
√

Rc
A

2 + Rc
B

2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, (12b)

as generated by these Gaussian distributions, have to be compen-
sated. The double sum for Eovrl runs over unique atom pairs and
has to be extended, if necessary, beyond the minimum image con-
vention. The electrostatic term also includes an interaction of the
compensation charge with the electronic charge density that has
to be subtracted from the external potential energy. The correction
potential is of the form

VA
core = ∫ dr′

nA
(r′)

∣r − r′∣
= −

ZA

∣r − A∣
erf[
∣r − A∣

Rc
A
]. (13)

The treatment of the electrostatic energy terms and the XC energy
is the same as in PW codes.10 This means that the same methods
that are used in those codes to adapt Eq. (11) for cluster boundary
conditions can be used here. This includes analytic Green’s function
methods,10 the method of Eastwood and Brownrigg,11 the meth-
ods of Martyna and Tuckerman,12,13 and wavelet approaches.14,15

Starting from n(R), using Fourier transformations, we can calcu-
late the combined potential for the electrostatic and XC energies.
This includes the calculation of the gradient of the charge density
needed for generalized gradient approximation (GGA) functionals.
For non-local van der Waals functionals,16 we use the Fourier trans-
form based algorithm of Román-Pérez and Soler.17 The combined
potential calculated on the grid points VXC(R) is then the starting
point to calculate the KS matrix elements

HXC
μν =

Ω
N1N2N3

∑
R

VXC
(R)φμ(R)φν(R). (14)

This inverse mapping VXC
(R) → HXC

μν is using the same methods
that have been used for the charge density. In this case, we can
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achieve linear scaling with small prefactors. Furthermore, a large
variety of different techniques to solve the eigenvalue problem for
the now completed KS Hamilton matrix, so of which are linear
scaling too, are described in detail in Sec. VIII.

A consistent calculation of nuclear forces within the GPW
method can be done easily. Pulay terms, i.e., the dependence of
the basis functions on nuclear positions, require the integration of
potentials given on the real-space grid with derivatives of the basis
functions.18 However, the basic routines work with Cartesian Gaus-
sian functions and their derivatives are again functions of the same
type, so the same routine can be used. Similarly, for XC functionals
including the kinetic energy density, we can calculate τ(r) and the
corresponding potential and matrix representation using the same
mapping functions.

For the internal stress tensor

Πuv = −
1
Ω∑s

∂E[P]
∂hus

ht
sv , (15)

we use again the Fourier transform framework for the EXC terms and
the simple virial for all pair forces. This applies to all Pulay terms,
and only for the XC energy contributions from GGA functionals,
special care is needed due to the cell dependent grid integration.19–21

B. Dual-space pseudopotentials
The accuracy of the PW expansion of the electron density in

the GPW method is controlled by the cutoff value Ecut restricting the
maximal allowed value of |G|2. In the case of Gaussian basis sets, the
cutoff needed to get a given accuracy is proportional to the largest
exponent. As can been easily seen by inspecting common Gaussian
basis sets for elements of different rows in the periodic table, the
value of the largest exponent rapidly increases with atomic number.
Therefore, the prefactor in GPW calculations will increase similarly.
In order to avoid this, we can either resort to a pseudopotential
description of inner shells or use a dual representation as described
in Blöchl’s projector augmented-wave method (PAW).22 The pseu-
dopotentials used together with PW basis sets are constructed to
generate nodeless atomic valence functions. Fully non-local forms
are computationally more efficient and easier to implement. Dual-
space pseudopotentials are of this form and are, because of their ana-
lytic form consistent of Gaussian functions, easily applied together
with Gaussian basis sets.23–25

The pseudopotentials are given in real-space as

Vpp
loc(r) = −

Zion

r
erf(αppr) +

4

∑
i=1

Cpp
i (
√

2αppr)
2i−2

× exp[−(αppr)2
], with αpp

=
1

√
2rpp

loc

(16)

and a non-local part

Vpp
nl (r, r′) =∑

lm
∑

ij
⟨ r ∣ plm

i ⟩hl
ij ⟨p

lm
j ∣ r

′
⟩, (17)

where

⟨ r ∣ plm
i ⟩ = N l

i Y
lm
(r̂)rl+2i−2 exp[−

1
2
(

r
rl
)

2
] (18)

are Gaussian-type projectors resulting in a fully analytical formu-
lation that requires only the definition of a small parameter set for
each element. Moreover, the pseudopotentials are transferable and
norm-conserving. The pseudopotential parameters are optimized
with respect to the atomic all-electron wavefunction obtained from
relativistic density functional calculations using a numerical atom
code, which is also part of CP2K. A database with many pseu-
dopotential parameter sets optimized for different XC potentials is
available together with the distribution of the CP2K program.

C. Basis sets
The use of pseudopotentials in the GPW method also requires

the use of correspondingly adapted basis sets. In principle, the same
strategies that have been used to generate molecular or solid-state
Gaussian basis sets could be used. It is always possible to generate
specific basis sets for an application type, e.g., for metals or molecu-
lar crystals, but for ease of use, a general basis set is desirable. Such a
general basis should fulfill the following requirements: high accuracy
for smaller basis sets and a route for systematic improvements. One
and the same basis set should perform in various environments from
isolated molecules to condensed phase systems. Ideally, the basis sets
should lead for all systems to well conditioned overlap matrices and
be therefore well suited for linear scaling algorithms. To fulfill all
the above requirements, generally contracted basis sets with shared
exponents for all angular momentum states were proposed.26 In par-
ticular, a full contraction over all primitive functions is used for both
valence and polarization functions. The set of primitive functions
includes diffuse functions with small exponents that are mandatory
for the description of weak interactions. However, in contrast to the
practice used in augmented basis sets, these primitive functions are
always part of a contraction with tighter functions. Basis sets of this
type were generated according to a recipe that includes global opti-
mization of all parameters with respect to the total energy of a small
set of reference molecules.26 The target function was augmented
with a penalty function that includes the overlap condition number.
These basis sets of type molopt have been created for the first two
rows of the periodic table. They show good performance for molec-
ular systems, liquids, and dense solids. The results for the delta test
are shown in Fig. 18. The basis sets have seven primitive functions
with a smallest exponent of ≈0.047 for oxygen. This is very similar to
the smallest exponent found in augmented basis sets of the correla-
tion consistent type, e.g., ≈0.060 for aug-cc-pVTZ. The performance
of the grid mapping routines depends strongly on this most diffuse
function in the basis sets. We have therefore optimized a second set
of basis sets of the molopt type, where the number of primitives has
been reduced (e.g., 5 for first row elements), which also leads to less
diffuse functions. The smallest exponent for oxygen in this basis set
is now ≈0.162. These basis sets still show good performance in many
different environments and are especially suited for all types of con-
densed matter systems (e.g., see the delta test results in Sec. XV D).
The reduction of Gaussian primitives and the removal of very diffuse
functions lead to a 10-fold time reduction for the mapping routines
for liquid water calculations using default settings.

D. Local density fitting approach
Within the GPW approach, the mapping of the electronic

density on the grid is often the time determining step. With an

J. Chem. Phys. 152, 194103 (2020); doi: 10.1063/5.0007045 152, 194103-4

© Author(s) 2020

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

appropriate screening, this is a linear scaling step with a prefactor
determined by the number of overlapping basis functions. Especially
in condensed phase systems, the number of atom pairs that have to
be included can be very large. For such cases, it can be beneficial to
add an intermediary step in the density mapping. In this step, the
charge density is approximated by another auxiliary Gaussian basis.
The expansion coefficients are determined using the local density
fitting approach by Baerends et al.27 They introduced a local metric,
where the electron density is decomposed into pair-atomic densi-
ties, which are approximated as a linear combination of auxiliary
functions localized at atoms A and B. The expansion coefficients
are obtained by employing an overlap metric. This local resolution-
of-the-identity (LRI) method combined with the GPW method is
available in CP2K as the LRIGPW approach.28 For details on how to
set up such a calculation, see Ref. 29.

The atomic pair densities nAB are approximated by an expan-
sion in a set of Gaussian fit functions f (r) centered at atoms A and
B, respectively. The expansion coefficients are obtained for each pair
AB by fitting the exact density while keeping the number of electrons
fixed. This leads to a set of linear equations that can be solved eas-
ily. The total density is then represented by the sum of coefficients
of all pair expansions on the individual atoms. The total density is
now presented as a sum over the number of atoms, whereas in the
GPW method, we have a sum over pairs. In the case of 64 water
molecules in a periodic box, this means that the fitted density is
mapped on the grid by 192 atom terms rather than ≈200 000 atom
pairs.

LRIGPW requires the calculation of two- and three-index over-
lap integrals that is computationally demanding for large auxiliary
basis sets. To increase the efficiency of the LRIGPW implemen-
tation, we developed an integral scheme based on solid harmonic
Gaussian functions,30 which is superior to the widely used Cartesian
Gaussian-based methods.

An additional increase in efficiency can be achieved by rec-
ognizing that most of the electron density is covered by a very
small number of atom pair densities. The large part of more dis-
tant pairs can be approximated by an expansion on a single atom.
By using a distance criterion and a switching function, a method
with a smooth potential energy is created. The single atom expansion
reduces memory requirements and computational time consider-
ably. In the above water box example, about 99% of the pairs can
be treated as distant pairs.

E. Gaussian-augmented plane wave approach
An alternative to pseudopotentials, or a method to allow

for smaller cutoffs in pseudopotential calculations, is provided by
the Gaussian-augmented plane wave (GAPW) approach.31,32 The
GAPW method uses a dual representation of the electronic den-
sity, where the usual expansion of the density using the density
matrix Pαβ is replaced in the calculation of the Coulomb and XC
energy by

n(r) = ñ(r) +∑
A

nA(r) −∑
A

ñA(r). (19)

The densities ñ(r), nA(r), and ñA(r) are expanded in plane waves and
products of primitive Gaussians centered on atom A, respectively,
i.e.,

ñ(r) =
1
Ω∑G

ñ(G) eiG⋅r , (20a)

nA(r) = ∑
mn∈A

PA
mn gm(r) g⋆n (r), (20b)

ñA(r) = ∑
mn∈A

P̃A
mn gm(r) g⋆n (r). (20c)

In Eq. (20a), ñ(G) are the Fourier coefficients of the soft density, as
obtained in the GPW method by keeping in the expansion of the
contracted Gaussians only those primitives with exponents smaller
than a given threshold. The expansion coefficients PA

mn and P̃A
mn are

also functions of the density matrix Pαβ and can be calculated effi-
ciently. The separation of the density from Eq. (19) is borrowed
from the PAW approach.22 Its special form allows the separation of
the smooth parts, characteristic of the interatomic regions, from the
quickly varying parts close to the atoms while still expanding inte-
grals over all space. The sum of the contributions in Eq. (19) gives
the correct full density if the following conditions are fulfilled:

n(r) = nA(r), ñ(r) = ñA(r) close to atom A, (21a)

n(r) = ñ(r), nA(r) = ñA(r) far from atom A. (21b)

The first conditions are exactly satisfied only in the limit of a com-
plete basis set. However, the approximation introduced in the con-
struction of the local densities can be systematically improved by
choosing larger basis sets.

For semi-local XC functionals such as the local density approx-
imation (LDA), GGA, or meta functionals using the kinetic energy
density, the XC energy can be simply written as

EXC
GAPW[n] = EXC

[ñ] +∑
A

EXC
[nA] −∑

A
EXC
[ñA]. (22)

The first term is calculated on the real-space grid defined by the PW
expansion, and the other two are efficiently and accurately calculated
using atom centered meshes.

Due to the non-local character of the Coulomb operator, the
decomposition for the electrostatic energy is more complex. In order
to distinguish between local and global terms, we need to introduce
atom-dependent screening densities n0

A that generate the same mul-
tipole expansion Qlm

A as the local density nA − ñA + nZ
A, where nZ

A is
the nuclear charge of atom A, i.e.,

n0
A(r) =∑

lm
Qlm

A g lm
A (r). (23)

The normalized primitive Gaussians g lm
A (r) are defined with an

exponent such that they are localized within an atomic region. Since
the sum of local densities nA − ñA + nZ

A − n0
A has vanishing multiple

moments, it does not interact with charges outside the localization
region, and the corresponding energy contribution can be calculated
by one-center integrals. The final form of the Coulomb energy in the
GAPW method then reads as

EC
GAPW[n + nZ

] = EH
[ñ + n0

] +∑
A

EH
[nA + nZ

A]

−∑
A

EH
[ñA + n0

A], (24)
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where n0 is summed over all atomic contributions and EH[n] denotes
the Coulomb energy of a charge distribution n. The first term in
Eq. (24) can be efficiently calculated using fast Fourier transform
(FFT) methods using the GPW framework. The one-centered terms
are calculated on radial atomic grids.

The special form of the GAPW energy functional involves sev-
eral additional approximations in addition to a GPW calculation.
The accuracy of the local expansion of the density is controlled by
the flexibility of the product basis of primitive Gaussians. As we
fix this basis to be the primitive Gaussians present in the original
basis, we cannot independently vary the accuracy of the expansion.
Therefore, we have to consider this approximation as inherent to the
primary basis used.

With the GAPW method, it is possible to calculate materials
properties that depend on the core electrons. This has been used
for the simulation of the x-ray scattering in liquid water.33 X-ray
absorption (XAS) spectra are calculated using the transition poten-
tial method.34–40 Several nuclear and electronic magnetic properties
such as nuclear magnetic resonance (NMR) chemical shift and elec-
tric field gradient, electron paramagnetic resonance (EPR) hyperfine
coupling, and g-tensors are also available.41–44

III. HARTREE–FOCK AND HYBRID DENSITY
FUNCTIONAL THEORY METHODS

Even though semi-local DFT is a cornerstone of much of
condensed phase electronic structure modeling,45 it is also recog-
nized that going beyond GGA-based DFT is necessary to improve
the accuracy and reliability of electronic structure methods.46 One
path forward is to augment DFT by elements of wavefunction the-
ory47 or to adopt wavefunction theory itself.48 This is the approach
taken in successful hybrid XC functionals such as B3LYP or Heyd-
Scuseria-Ernzerhof (HSE),49,50 where part of the exchange func-
tional is replaced by exact Hartree–Fock exchange (HFX). The capa-
bility to compute HFX was introduced in CP2K by Guidon et al.51–53

The aim at that time was to enable the use of hybrid XC functionals
for condensed phase calculations, of relatively large, disordered sys-
tems, in the context of AIMD simulations. This objective motivated
a number of implementation choices and developments that will be
described in the following. The capability was particularly important
to make progress in the field of first principles electro-chemistry54,55

but is also the foundation for the correlated wavefunction (CW)
methods such as MP2, RPA, and GW that are available in CP2K and
will be described in Sec. IV.

In the periodic case, HFX can be computed as

EPBC
X = −

1
2Nk
∑
i,j
∑
k,k′
∬ ψk

i (r1)ψk′
j (r1)

× g(∣r1 − r2∣)ψk
i (r2)ψk′

j (r2)d3r1d3r2, (25)

where an explicit sum over the k-points is retained and a general-
ized Coulomb operator g(|r1 − r2|) is employed. The k-point sum
is important as at least for the standard Coulomb operator 1/r, the
term for k = k′ = 0 (the so-called Γ-point) is singular, although the
full sum approximates an integrable expression. If the operator is
short-ranged or screened, the Γ-point term is well-behaved. CP2K
computes HFX at the Γ-point only and employs a localized atomic

basis set, using an expression where the sum is explicit over the
indices of the localized basis (λσμν) as well as the image cells (abc),
thus

EΓ
X = −

1
2 ∑λσμν

PμσPνλ∑
abc
(μνa∣λbσb+c

)
g
. (26)

For an operator with a finite range, the sum over the image cells
will terminate. This expression was employed to perform hybrid
DFT-based AIMD simulations of liquid water with CP2K.51 Several
techniques have been introduced to reduce the computational cost.
First, screening based on the overlap of basis functions is employed
to reduce the scaling of the calculation from O(N4) to O(N2). This
does not require any assumptions on the sparsity of the density
matrix, nor the range of the operator, and makes HFX feasible for
fairly large systems. Second, the HFX implementation in CP2K is
optimized for “in-core” calculations, where the four center integrals
are computed (analytically) only once at the beginning of the SCF
procedure, stored in main memory, and reused afterward. This is
particularly useful in the condensed phase as the sum over all image
cells multiplies the cost of evaluating the integral, relative to gas
phase calculations. To store all computed integrals, the code has
been very effectively parallelized using Message Passing Interface
(MPI) and Open Multi-Processing (OpenMP), yielding super-linear
speed-ups as long as added hardware resources provide additional
memory to store all integrals. Furthermore, a specialized compres-
sion algorithm is used to store each integral with just as many bits
as needed to retain the target accuracy. Third, a multiple-time-step
(MTS) algorithm (see Sec. X D) is employed to evaluate HFX ener-
gies only every few time steps during an AIMD simulation, assuming
that the difference between the potential energy surface of a GGA
and a hybrid XC functional is slowly varying with time. This tech-
nique has found reuse in the correlated wavefunction simulations
described in Sec. IV.

In Ref. 52, the initial implementation was revisited, in particu-
lar, to be able to robustly compute HFX at the Γ-point for the case
where the operator in the exchange term is 1

r , and not a screened
operator as, e.g., in HSE.56,57 The solution is to truncate the oper-
ator (not any of the image cell sums), with a truncation radius RC
that grows with the cell size. The advantage of this approach is that
the screening of all terms in Eq. (26) can be performed rigorously
and that the approach is stable for a proper choice of screening
threshold, also in the condensed phase with good quality (but non-
singular) basis sets. The value of RC that yields convergence is system
dependent, and large values of RC might require the user to explic-
itly consider multiple unit cells for the simulation cell. Note that the
HFX energy converges exponentially with RC for typical insulating
systems and that the same approach was used previously to acceler-
ate k-point convergence.58 In Ref. 59, it was demonstrated that two
different codes (CP2K and Gaussian), with very different implemen-
tations of HFX, could reach micro-Hartree agreement for the value
of the HF total energy of the LiH crystal. In Ref. 52, a suitable GGA-
type exchange function was derived that can be used as a long range
correction (LRC) together with the truncated operator. This correc-
tion functional, in the spirit of the exchange functional employed in
HSE, effectively allows for model chemistries that employ very short
range exchange (e.g., ≈2 Å) only.

Important for the many applications of HFX with CP2K is the
auxiliary density matrix method (ADMM), introduced in Ref. 53.
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This method reduces the cost of HFX significantly, often bringing
it to within a few times the cost of conventional GGA-based DFT,
by addressing the unfavorable scaling of the computational cost of
Eq. (26) with respect to basis set size. The key ingredient of the
ADMM method is the use of an auxiliary density matrix P̂, which
approximates the original P, for which the HFX energy is more
cost-effective to compute,

EHFX
X [P] = EHFX

X [P̂] + (EHFX
X [P] − EHFX

X [P̂])

≈ EHFX
X [P̂] + (EDFT

X [P] − EDFT
X [P̂]). (27)

Effectively, EHFX
X [P] is replaced with computationally more efficient

EHFX
X [P̂], and the difference between the two is corrected approxi-

mately with a GGA-style exchange functional. Commonly, the auxil-
iary P̂ is obtained by projecting the density matrix P using a smaller,
auxiliary basis. This approximation, including the projection, can
be implemented fully self-consistently. In Ref. 60, the efficiency of
the ADMM method was demonstrated by computing over 300 ps of
AIMD trajectory for systems containing 160 water molecules and
by computing spin densities for a solvated metalloprotein system
containing ∼3000 atoms.53

IV. BEYOND HARTREE–FOCK METHODS
In addition, so-called post–Hartree–Fock methods that are

even more accurate than the just describe hybrid-DFT approach are
also available within CP2K.

A. Second-order Møller–Plesset perturbation theory
Second-order Møller–Plesset perturbation theory (MP2) is the

simplest ab initio correlated wavefunction method61 applied to the
Hartree–Fock reference and able to capture most of the dynamic
electron correlation.62 In the DFT framework, the MP2 formalism
gives rise to the doubly hybrid XC functionals.63 In the spin-orbital
basis, the MP2 correlation energy is given by

E(2) =
1
2

⎧⎪⎪
⎨
⎪⎪⎩

∑
ij,ab

(ia∣jb)[(ia∣jb) − (ib∣ja)]
Δab

ij

+ ∑
ij,ab

(ia∣jb)[(ia∣jb) − (ib∣ja)]

Δab
ij

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

−∑

ij,ab

(ia∣jb)
Δab

ij

, (28)

where i, j, . . . run over occupied spin-orbitals, a, b, . . . run over vir-
tual spin-orbitals (indexes without bar stand for α-spin-orbitals and
indexes with bar stand for β-spin-orbitals), Δab

ij = ϵa + ϵb − ϵi − ϵj
(ϵa and ϵi are orbital energies), and (ia|jb) are electron repulsion
integrals in the Mulliken notation.

In a canonical MP2 energy algorithm, the time limiting step is
the computation of the (ia|jb) integrals obtained from the electron
repulsion integrals over AOs (μν|λσ) via four consecutive index inte-
gral transformations. The application of the resolution-of-identity
(RI) approximation to MP2,64 which consists of replacing integrals
(ia|jb) by its approximated counterparts (ia|jb)RI, is given by

(ia∣jb)RI =∑
P

Bia
P Bjb

P , (29)

with

Bia
P =∑

R
(ia∣R)L−1

PR , (30)

where P, R, . . . (the total number of them is Na) are auxiliary basis
functions and L are two-center integrals over them. The RI-MP2
method is also scaling O(N5) with a lower prefactor: the main rea-
son for the speed-up in RI-MP2 lies in the strongly reduced integral
computation cost.

As the MP2 is non-variational with respect to wavefunction
parameters, analytical expressions for geometric energy derivatives
of RI-MP2 energies are complicated, since its calculation requires
the solution of Z-vector equations.65

1. Scaled opposite-spin MP2
The scaled opposite-spin MP2 (SOS-MP2) method is a simpli-

fied variant of MP2.66 Starting from Eq. (28), we neglect the same
spin term in curly brackets and scale the remaining opposite spin
term to account for the introduced error. We can rewrite the energy
term with the RI approximation and the Laplace transform,

1
x
= ∫

∞

0
dt e−xt . (31)

When we exploit a numerical integration, we obtain the working
equation for SOS-MP2, which reads as

ESOS-MP2
= −∑

q
∑
PQ

wqQα
PQ(tq)Q

β
QP(tq) (32)

with

Qα
PQ(tq) =∑

ia
Bia

P Bia
Qe(ϵa−ϵi)tq (33)

and similarly for the beta spin. The integration weights wq and
abscissa tq are determined by a minimax procedure.67 In practice,
≃7 quadrature points are needed for μhartree accuracy.66

The most expensive step is the calculation of the matrix ele-
ments Qα

PQ, which scales like O(N4
). Due to similarities with the

random phase approximation (RPA), we will discuss the implemen-
tation of this method in Sec. IV B.

2. Implementation
CP2K features Γ-point implementations of canonical MP2, RI-

MP2, Laplace-transformed MP2, and SOS-MP2 energies.68,69 For
RI-MP2, analytical gradients and stress tensors are available,70 for
both closed and open electronic shells.71 Two- and three-center
integrals can be calculated by the GPW method or analytically.

The implementation is massively parallel, directly profits from
the availability of sparse matrix algebra, and allows for graphics
processing unit (GPU) acceleration of large matrix multiplies. The
evaluation of the gradients of the RI-MP2 energy can be performed
within a few minutes for systems containing hundreds of atoms
and thousands of basis functions on thousands of central processing
unit (CPU) cores, allowing for MP2-based structure relaxation and
even AIMD simulations on HPC facilities. The cost of the gradient
calculation is 4–5 times larger than the energy evaluation, and open-
shell MP2 calculation is typically 3–4 times more expensive than the
closed-shell calculation.
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3. Applications
The RI-MP2 implementation, which is the computationally

most efficient MP2 variant available in CP2K, has been success-
fully applied to study a number of aqueous systems. In fact,
ab initio Monte Carlo (MC) and AIMD simulations of bulk liquid
water (with simulation cells containing 64 water molecules) pre-
dicted the correct density, structure, and IR spectrum.72–74 Other
applications include structure refinements of ice XV,75 AIMD simu-
lations of the bulk hydrated electron (with simulation cells contain-
ing 47 water molecules),76 as well as the first AIMD simulation of a
radical in the condensed phase using wavefunction theory.

B. Random phase approximation correlation
energy method

Total energy methods based on the RPA correlation energy
have emerged in the recent years as promising approaches to include
non-local dynamical electron correlation effects at the fifth rung on
the Jacob’s ladder of density functional approximations.77 In this
context, there are numerous ways to express the RPA correlation
energy depending on the theoretical framework and approxima-
tions employed to derive the working equations.78–96 Our imple-
mentation uses the approach introduced by Eshuis et al.,97 which
can be referred to as based on the dielectric matrix formulation,
involving the numerical integral over the frequency of a logarithmic
expression including the dynamical dielectric function, expressed in
a Gaussian RI auxiliary basis. Within this approach, the direct-RPA
(sometimes referred to as dRPA) correlation energy, which is a RPA
excluding exchange contributions,97 is formulated as a frequency
integral

ERPA
c =

1
2 ∫

+∞

−∞

dω
2π

Tr(ln(1 + Q(ω)) −Q(ω)), (34)

with the frequency dependent matrixQ(ω), expressed in the RI basis,
determined by

QPQ(ω) = 2
o

∑
i

v

∑
a

Bia
P

εa − εi

ω2 + (εa − εi)2 Bia
Q . (35)

For a given ω, the computation of the integrand function in Eq. (34)
and using Eq. (35) requires O(N4) operations. The integral of
Eq. (34) can be efficiently calculated by a minimax quadrature
requiring only ≃10 integration points to achieve μhartree accu-
racy.98,99 Thus, the introduction of the RI approximation and the
frequency integration techniques for computing ERPA

c leads to a
computational cost of O(N4Nq) and O(N3) storage, where Nq is the
number of quadrature points.69

We note here that the conventional RPA correlation energy
methods in CP2K are based on the exact exchange (EXX) and RPA
correlation energy formalism (EXX/RPA), which has extensively
been applied to a large variety of systems including molecules, sys-
tems with reduced dimensionality, and solids.75,78–81,83,84,86–89,100–111

Within the framework of the EXX/RPA formalism, the total energy
is given as

EEXX/RPA
tot = EHF

tot + ERPA
C

= (EDFT
tot − EDFT

XC ) + EEXX
X + ERPA

C , (36)

where the right-hand side (RHS) terms of the last equation are the
DFT total energy, the DFT xc energy, the EXX energy, and the
(direct) RPA correlation energy, respectively. The sum of the first
three terms is identical to the Hartree–Fock energy as calculated
employing DFT orbitals, which is usually denoted as HF@DFT. The
last term corresponds to the RPA correlation energy as computed
using DFT orbitals and orbital energies and is often referred to as
RPA@DFT. The calculation of EEXX/RPA

tot thus requires a ground state
calculation with a given DFT functional, followed by an EXX energy
evaluation and a RPA correlation energy evaluation employing DFT
ground state wavefunctions and orbital energies.

1. Implementation of the quartic scaling RPA
and SOS-MP2 methods

We summarize here the implementation in CP2K of the quartic
scaling computation of the RPA and SOS-MP2 correlation energies.
The reason to describe the two implementations here is due to the
fact that the two approaches share several components. In fact, it can
be shown that the direct MP2 energy can be obtained by truncating
at the first non-vanishing term of the Taylor expansion to compute
the logarithm in Eq. (34) and integrating over frequencies.97

After the three center RI integral matrix Bia
P is made avail-

able (via, i.e., RI-GPW69), the key component of both methods is
the evaluation of the frequency dependent QPQ(ω) for the RPA
and the τ dependent QPQ(τ) for the Laplace transformed SOS-
MP2 method (see Sec. IV A 1). The matrices QPQ(ω) and QPQ(τ)
are given by the contractions in Eqs. (35) and (33), respectively.
Their computation entails, as a basic algorithmic motif, a large
distributed matrix multiplication between tall and skinny matrices
for each quadrature point. Fortunately, the required operations at
each quadrature point are independent of each other. The paral-
lel implementation in CP2K exploits this fact by distributing the
workload for the evaluation of QPQ(ω) and QPQ(τ) over pools of
processes, where each pool is working independently on a sub-
set of quadrature points. Furthermore, the operations necessary for
each quadrature point are performed in parallel within all mem-
bers of the pool. In this way, the O(N4) bottleneck of the computa-
tion displays an embarrassingly parallel distribution of the workload
and, in fact, it shows excellent parallel scalability to several thou-
sand nodes.69,98 Additionally, since at the pool level, the distributed
matrix multiplication employs the widely adopted data layout of
the parallel BLAS library, minimal modifications are required to
exploit accelerators [such as graphics processing units (GPUs) and
field-programmable gate arrays (FPGAs); see Sec. XV A for details],
as interfaces to the corresponding accelerated libraries are made
available.98

Finally, the main difference between RPA and SOS-MP2 is
the postprocessing. After the contraction step to obtain the QPQ
matrix, the sum in Eq. (32) is performed with computational costs
of O(N2

a Nq) for SOS-MP2 instead of O(N3
a Nq), which is associ-

ated with the evaluation of the matrix logarithm of Eq. (34) for
the RPA (in CP2K, this operation is performed using the identity
Tr[lnA] = ln(det[A]), where a Cholesky decomposition is used to
efficiently calculate the matrix determinant). Therefore, the compu-
tational costs of the quartic-scaling RPA and SOS-MP2 are the same
for large systems, assuming that the same number of quadrature
points is used for the numerical integration.
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2. Cubic scaling RPA and SOS-MP2 method

The scaling of RPA and SOS-MP2 can be reduced from O(N4)
to O(N3) or even better by alternative analytical formulations of the
methods.112,113 Here, we describe the CP2K-specific cubic scaling
RPA/SOS-MP2 implementation and demonstrate the applicability
to systems containing thousands of atoms.

For cubic scaling RPA calculations, the matrix QPQ(ω) from
Eq. (35) is transformed to imaginary-time QPQ(τ)99 as it is already
present in SOS-MP2. The tensor Bia

P is transformed from occupied-
virtual MO pairs ia to pairs μν of AO basis set functions. This decou-
ples the sum over occupied and virtual orbitals and thereby reduces
the formal scaling from quartic to cubic. Further requirements for a
cubic scaling behavior are the use of localized atomic Gaussian basis
functions and the localized overlap RI metric such that the occurring
3-center integrals are sparse. A sparse representation of the density
matrix is not a requirement for our cubic scaling implementation,
but it reduces the effective scaling of the usually dominant O(N2)
sparse tensor contraction steps to O(N).112

The operations performed for the evaluation of QPQ(τ) are gen-
erally speaking contractions of sparse tensors of ranks 2 and 3 -
starting from the 3-center overlap integrals and the density matrix.
Consequently, sparse linear algebra is the key to good performance,
as opposed to the quartic scaling implementation that relies mostly
on parallel BLAS for dense matrix operations.

The cubic scaling RPA/SOS-MP2 implementation is based on
the distributed block compressed sparse row (DBCSR) library,114

which is described in detail in Sec. XIII and was originally co-
developed with CP2K, to enable linear scaling DFT.115 The library
was extended with a tensor API in a recent effort to make it
more easily applicable to algorithms involving contractions of large
sparse multi-dimensional tensors. Block-sparse tensors are inter-
nally represented as DBCSR matrices, whereas tensor contractions
are mapped to sparse matrix–matrix multiplications. An in-between
tall-and-skinny matrix layer reduces memory requirements for stor-
age and reduces communication costs for multiplications by split-
ting the largest matrix dimension and running a simplified variant
of the CARMA algorithm.116 The tensor extension of the DBCSR
library leads to significant improvements in terms of performance
and usability compared to the initial implementation of the cubic
scaling RPA.113

In Fig. 1, we compare the computational costs of the quartic
and the cubic scaling RPA energy evaluation for periodic water sys-
tems of different sizes. All calculations use the RI together with the
overlap metric and a high-quality cc-TZVP primary basis with a
matching RI basis. The neglect of small tensor elements in the O(N3)
implementation is controlled by a filtering threshold parameter. This
parameter has been chosen such that the relative error introduced in
the RPA energy is below 0.01%. The favorable effective scaling of
O(N1.8) in the cubic scaling implementation leads to better absolute
timings for systems of 100 or more water molecules. At 256 water
molecules, the cubic scaling RPA outperforms the quartic scaling
method by one order of magnitude.

The observed scaling is better than cubic in this example
because the O(N3) scaling steps have a small prefactor and would
start to dominate in systems larger than the ones presented here—
they make up for around 20% of the execution time for the largest
system. The dominant sparse tensor contractions are quadratic

FIG. 1. Comparison of the timings for the calculation of the RPA correlation energy
using the quartic- and the cubic-scaling implementation on a CRAY XC50 machine
with 12 cores per node (flat MPI). The system sizes are n × n × n supercells (with
n = 1, 2, 3) of a unit cell with 32 water molecules and a density of 1 g/cm3. The
intersection point where the cubic scaling methods become favorable is at ∼90
water molecules. The largest system tested with the cubic scaling RPA contains
864 water molecules (6912 electrons, 49 248 primary basis functions, and 117 504
RI basis functions) and was calculated on 256 compute nodes (3072 cores). The
largest tensor of size 117 504 × 49 248 × 49 248 has an occupancy below 0.2%.

scaling, closely matching the observed scaling of O(N1.8). It is impor-
tant to mention that the density matrices are not yet becoming
sparse for these system sizes. Lower dimensional systems with large
extent in one or two dimensions have an even more favorable scaling
regime of O(N) since the onset of sparse density matrices occurs at
smaller system sizes.

All aspects of the comparison discussed here also apply to SOS-
MP2 because it shares the algorithm and implementation of the
dominant computational steps with the cubic scaling RPA method.
In general, the exact gain of the cubic scaling RPA/SOS-MP2 scheme
depends on the specifics of the applied basis sets (locality and size).
The effective scaling, however, is O(N3) or better for all systems,
irrespective of whether the density matrix has a sparse representa-
tion, thus extending the applicability of the RPA to large systems
containing thousands of atoms.

C. Ionization potentials and electron affinities
from GW

The GW approach, which allows us to approximately calculate
the self-energy of a many-body system of electrons, has become a
popular tool in theoretical spectroscopy to predict electron removal
and addition energies as measured by direct and inverse photoelec-
tron spectroscopy, respectively [see Figs. 2(a) and 2(b)].117–120 In
direct photoemission, the electron is ejected from orbital ψn to the
vacuum level by irradiating the sample with visible, ultraviolet, or
X-rays, whereas in the inverse photoemission process, an injected
electron undergoes a radiative transition into an unoccupied
state.

The GW approximation has been applied to a wide range
of materials including two-dimensional systems, surfaces, and
molecules. A summary of applications and an introduction to the
many-body theory behind GW and practical aspects can be found in
a recent review article.120 The electron removal energies are referred
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FIG. 2. Properties predicted by the GW method: Ionization potentials and elec-
tron affinities as measured by (a) photoemission and (b) inverse photoemission
spectroscopy, respectively. (c) Level alignment of the HOMO and LUMO upon
adsorption of a molecule at metallic surfaces, which are accounted for in CP2K
by an IC model avoiding the explicit inclusion of the metal in the GW calculation.

to as ionization potentials (IPs) and the negative of the electron addi-
tion energies are referred to as electron affinities (EAs); see Ref. 120
for details on the sign convention. The GW method yields a set of
energies {εn} for all occupied and unoccupied orbitals {ψn}. εn can
be directly related to the IP for occupied states and to the EA for the
lowest unoccupied state (LUMO). Hence,

IPn = −εn, n ∈ occ and EA = −εLUMO. (37)

The difference between the IP of the highest occupied state (HOMO)
and the EA is called the fundamental gap, a critical parameter
for charge transport in, e.g., organic semiconductors.121 It should
be noted that the fundamental HOMO–LUMO gap does not cor-
respond to the first optical excitation energy (also called optical
gap) that is typically smaller than the fundamental gap due to the
electron–hole binding energy.122 For solids, the Bloch functions
ψnk carry an additional quantum number k in the first Brillouin
zone and give rise to a band structure εnk.118,123 From the band
structure, we can determine the bandgap, which is the solid-state
equivalent to the HOMO–LUMO gap. Unlike for molecules, an
angle-resolved photoemission experiment is required to resolve the
k-dependence.

For GW, mean absolute deviations of less than 0.2 eV from
the higher-level coupled-cluster singles and doubles plus perturba-
tive triples [CCSD(T)] reference have been reported for IPHOMO and
EA.124,125 The deviation from the experimental reference can be even
reduced to <0.1 eV when including also vibrational effects.126 On
the contrary, DFT eigenvalues εDFT

n fail to reproduce spectroscopic
properties. Relating εDFT

n to the IPs and EA as in Eq. (37) is con-
ceptually only valid for the HOMO level.127 Besides the conceptual
issue, IPs from DFT eigenvalues are underestimated by several eV
compared to experimental IPs due to the self-interaction error in
GGA and LDA functionals yielding far too small HOMO–LUMO
gaps.128,129 Hybrid XC functionals can improve the agreement with
experiment, but the amount of exact exchange can strongly influence
εDFT

n in an arbitrary way.
The most common GW scheme is the G0W0 approximation,

where the GW calculation is performed non-self-consistently on
top of an underlying DFT calculation. In G0W0, the MOs from
DFT ψDFT

n are employed and the DFT eigenvalues are corrected by
replacing the incorrect XC contribution ⟨ψDFT

n ∣vxc
∣ψDFT

n ⟩ by the more
accurate energy-dependent XC self-energy ⟨ψDFT

n ∣Σ(ε)∣ψDFT
n ⟩, i.e.,

εn = εDFT
n + ⟨ψDFT

n ∣Σ(εn) − v
XC
∣ψDFT

n ⟩. (38)

The self-energy is computed from the Green’s function G and the
screened Coulomb interaction W, Σ = GW, hence the name of the
GW approximation.119,120

The G0W0 implementation in CP2K works routinely for iso-
lated molecules,130 although first attempts have been made to extend
it for periodic systems.76,131,132 The standard G0W0 implementation
is optimized for computing valence orbital energies εn (e.g., up to
10 eV below the HOMO and 10 eV above the LUMO).130 The fre-
quency integration of the self-energy is based on the analytic con-
tinuation using either the 2-pole model133 or Padé approximant as
the analytic form.134 For core levels, more sophisticated implemen-
tations are necessary.135,136 The standard implementation scales with
O(N4

) with respect to system size N and enables the calculation
of molecules up to a few hundred atoms on parallel supercom-
puters. Large molecules exceeding thousand atoms can be treated
by the low-scaling G0W0 implementation within CP2K,137 which
effectively scales with O(N2

) to O(N3
).

The GW equations should be in principle solved self-
consistently. However, a fully self-consistent treatment is com-
putationally very expensive.138,139 In CP2K, an approximate self-
consistent scheme is available, where the wavefunctions ψDFT

n from
DFT are employed and only the eigenvalues in G and W are iter-
ated.128,130 That is, after completion of the G0W0 loop, the quasi-
particle energies obtained from Eq. (38) are reinserted into the
non-interacting Green’s function G0 and the screened Coulomb
W0 instead of the starting DFT eigenvalues. Via G0 and W0, the
change in the eigenvalues permeates to the self-energy and even-
tually to the energies ϵn.120 This eigenvalue-self-consistent scheme
(evGW) includes more physics than G0W0 but is still computation-
ally tractable. Depending on the underlying DFT functional, evGW
improves the agreement of the HOMO–LUMO gaps with experi-
ment by 0.1–0.3 eV compared to G0W0.128,130 For lower lying states,
the improvement over G0W0 might be not as consistent.140

Applications of the GW implementation in CP2K have
been focused on graphene-based nanomaterials on gold surfaces
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complementing scanning tunneling spectroscopy with GW calcula-
tions to validate the molecular geometry and to obtain information
about the spin configuration.141 The excitation process generates an
additional charge on the molecule. As a response, an image charge
(IC) is formed inside the metallic surface, which causes occupied
states to move up in energy and unoccupied states to move down.
The HOMO–LUMO gap of the molecule is thus significantly low-
ered on the surface compared to the gas phase [see Fig. 2(c)]. This
effect has been accounted for by an IC model,142 which is imple-
mented in CP2K. Adding the IC correction on-top of a gas phase
evGW calculation of the isolated molecule, CP2K can efficiently
compute HOMO–LUMO gaps of physisorbed molecules on metal
surfaces.141

However, if not explicitly stated otherwise, we will confine
ourselves to conventional KS-DFT from now on.

V. CONSTRAINED DENSITY FUNCTIONAL THEORY
The CDFT method facilitates to construct charge and/or spin

localized states, which are needed in a number of applications,143

such as

● studying charge transfer (CT) phenomena and calculat-
ing electronic couplings (e.g., using the Marcus theory
approach),

● correcting spurious charge delocalization due to self-
interaction error, and

● parameterizing model Hamiltonians (e.g., the Heisenberg
spin Hamiltonian).

The basic theory underlying CDFT has been derived by Wu and Van
Voorhis,144,145 whereas the present implementation within CP2K is
described in detail elsewhere,146,147 which is why both are only very
briefly summarized here.

The charge and spin localized states are created by enforcing
electron and spin density localization within atom centered regions
of space. To this effect, the KS energy functional EKS[ρ] is augmented
by additional constraint potentials, i.e.,

ECDFT[ρ, λ]

= max
λ

min
ρ

⎛

⎝
EKS[ρ] +∑

c
λc

⎡
⎢
⎢
⎢
⎣
∑

i=↑,↓
∫ drwi

c(r)ρ
i
(r) −Nc

⎤
⎥
⎥
⎥
⎦

⎞

⎠
,

(39)

where λ = [λ1, λ2, . . .]T are the constraint Lagrangian multipliers,
which can be thought of as the strengths of the constraint potentials,
Nc is the target value of the corresponding constraint, whereas wi

c(r)
is an atom centered weight function. The latter is constructed as a
normalized sum over a set of selected constraint atoms C; hence,

wi
(r) =

∑j∈C cjPj(r)
∑j∈N Pj(r)

, (40)

where cj are atomic coefficients that determine how each atom is
included in the constraint, Pj is the so-called cell function that con-
trols the volume occupied by atom j according to some population
analysis method, whereas N is the set of all atoms in a system. Dif-
ferent types of constraints can be constructed by modifying wi

c(r)
according to the following conventions:

● charge constraint (ρ↑ + ρ↓): wi = w↑ = w↓,
● magnetization constraint (ρ↑ − ρ↓): wi = w↑ = −w↓, and
● spin specific constraint (ρ↑/↓): wi = w↑/↓, w↓/↑ = 0.

In CP2K, the Becke and Hirshfeld space partitioning schemes are
implemented as constraint weight functions. Using CDFT within
AIMD or to optimize the geometry, however, the following addi-
tional force term arises due to the employed constraints:

FI,c = −λc ∫ dr
∂wc(r)
∂RI

ρ(r). (41)

As illustrated in Fig. 3, ECDFT[ρ, λ] is optimized self-consistently
using a two-tiered approach: one external optimization loop for the
constraints and an inner loop to converge the electronic structure,
as described in detail in Sec. VIII. By definition, all constraints are
satisfied when

c(λ) =
⎡
⎢
⎢
⎢
⎣
∑

i=↑,↓
∫ drwi

1(r)ρ
i
(r) −N1,⋯

⎤
⎥
⎥
⎥
⎦

T

= 0. (42)

The constraint Lagrangian multipliers λ can therefore be optimized
by minimizing the constraint error expression maxλ|c(λ)| using
root-finding algorithms. For Newton and quasi-Newton optimizers,
a new guess for λ at step n is generated according to the following
iteration formula:

FIG. 3. Schematic of the CDFT SCF
procedure. The constraint Lagrangians
λ are first optimized in the outer CDFT
loop, their values are subsequently fixed,
and the electron density corresponding
to these fixed values is solved like in tra-
ditional CP2K DFT simulations. The con-
trol is then returned to the outer CDFT
loop, where the convergence of the con-
straints is checked. This iteration pro-
cess is repeated until convergence is
achieved.
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λn = λn−1 − αJ−1
n c(λn−1), (43)

where α ∈ (0, 1]) is the step size and J−1 is the inverse Jacobian
matrix, which is approximated by means of finite differences.

A. Mixed constrained density functional theory
Additional properties can be calculated from the interactions

between CDFT states. Since in CP2K, these types of simulations,
where multiple CDFT states are treated in parallel, leverage the
mixed force methods described in Sec. XII, we will refer to them as
mixed CDFT simulations, which are useful for a variety of different
functions including

● calculating charge transfer kinetics parameters and
● performing configuration interaction (CI) calculations

within the basis of CDFT states.

The theoretical concepts related to mixed CDFT calculations
are best introduced through an example. Consider the following one
electron transfer process X− + Y → X + Y−. Denote the initial and
final states of this reaction as A and B, respectively. Now, according
to the Marcus theory of electron transfer, the charge transfer rate of
this reaction is given by the rate equation

kab =
2π
h̵
⟨∣Hab∣

2
⟩T

√
4πkBTξ

exp(−
(ξ + ΔA)2

4πkBTξ
), (44)

where ΔA is the reaction free energy, ξ is the solvent reorganization
energy, and |Hab| is the electronic coupling. The first two quantities
can be obtained from free energy simulations, whereas the last is rig-
orously defined as the interaction energy between wavefunctions Ψ
representing the two reaction states, i.e.,

Hab = ⟨Ψa∣H∣Ψb⟩, (45)

where H is the many-electron Hamilton operator. The usefulness
of the electronic coupling quantity is not limited to the Marcus rate
equation, but it is also a central quantity in other charge transfer
theories, as well as in CDFT-based CI.148

Since the true interacting many-electron wavefunctions or the
Hamiltonian are not available within CDFT, the electronic coupling
is instead approximated using the CDFT surrogates

HAB ≈ ⟨ΦA∣HKS∣ΦB⟩ = EBSAB −∑
c
λB

c W
AB
c , (46a)

HBA ≈ ⟨ΦB∣HKS∣ΦA⟩ = EASBA −∑
c
λA

c W
BA
c , (46b)

where Φ are the CDFT KS determinants, EI is the CDFT energy of
state I, SAB = ⟨ΦA|ΦB⟩, and WAB

c are the weight function matrices
defined by

WAB
c = ⟨ΦA∣w

B
c (r)∣ΦB⟩. (47)

In the above expressions, capital subscripts have been used to
emphasize the fact that the CDFT determinants are in general non-
orthogonal. The electronic couplings and overlaps are collected into
matrices H and S, respectively. The off-diagonal elements of H are

FIG. 4. Illustration of the DFT self-interaction error using the PBE XC functional
for the reaction H+

2 → H+ + H. However, employing the fragment constraint states
|H+H⟩ and |HH+⟩ as the basis, the correct profile can be recovered with CDFT-CI.

not symmetric. The matrix is converted to the symmetric form by
setting

H′AB = H
′
BA =

HAB + HBA

2

=
EA+EB

2
SAB−∑

c
⟨ΦA∣

λA
c w

A
c (r)+λB

c w
B
c (r)

2
∣ΦB⟩. (48)

FIG. 5. Using a fragment-based CDFT constraint, the system is first divided into
two fragments with atomic positions fixed in the same configuration as in the full
system. The electron and spin densities of the fragment systems are then saved
to cube files and subsequently used as input files for the CDFT calculation, where
the constraint target value is calculated from the superimposed fragment densities.
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The resulting matrix H′ is then orthogonalized to yield the final
electronic coupling.

A pathological example of a system where the self-interaction
error of common DFT XC functionals leads to unphysical results is
the simple dissociation reaction H+

2 → H+ + H. Even though this
system contains only one electron, the dissociation profile obtained
with the Perdew-Burke-Ernzerhof (PBE) XC functional notably
deviates from the exact HF curve, as shown in Fig. 4. However, using
CDFT states as the basis of a CI calculation, it is possible to correct
for the self-interaction error of the H+

2 ion. In fact, using the PBE
XC functional, CDFT-CI is able to reproduce the exact dissociation
profile. Very briefly, CDFT-CI simulations involve representing the
system’s wavefunction as a linear combination of multiple CDFT
states, where the charge/spin density is constrained differently in dif-
ferent states. For that purpose, so-called fragment-based constraints
are employed, where the constraint target value is calculated from
the superposition of isolated fragment densities according to the
scheme shown in Fig. 5. The CI expansion coefficients and ener-
gies are then obtained by solving a generalized eigenvalue equation,
where the effective Hamilton matrix describes how the CDFT states
interact with each other.

VI. DENSITY FUNCTIONAL PERTURBATION THEORY
Several experimental observables are measured by perturbing

the system and then observing its response; hence, they can be
obtained as derivatives of the energy or density with respect to
some specific external perturbation. In the common perturbation
approach, the perturbation is included in the Hamiltonian, i.e., as
an external potential, then the electronic structure is obtained by
applying the variational principle and the changes in the expecta-
tion values are evaluated. The perturbation Hamiltonian defines the
specific problem. The perturbative approach applied in the frame-
work of DFT turns out to perform better than the straightforward
numerical methods, where the total energy is computed after actu-
ally perturbing the system.149,150 For all kinds of properties related to
derivatives of the total energy, DFPT is derived from the following
extended energy functional:

E[{ϕi}] = EKS[{ϕi}] + λEpert[{ϕi}], (49)

where the external perturbation is added in the form of a functional
and λ is a small perturbative parameter representing the strength of
the interaction with the static external field.151,152 The minimum of
the functional is expanded perturbatively in powers of λ as

E = E(0) + λE(1) + λ2E(2) +⋯, (50)

whereas the corresponding minimizing orbitals are

ϕi = ϕ(0)i + λϕ(1)i + λ2ϕ(2)i +⋯. (51)

If the expansion of the wavefunction up to an order (n − 1) is known,
then the variational principle for the 2nth-order derivative of the
energy is given by

E(2n)
= min

ϕ(n)
i

{E[
n

∑
k=0

λkϕ(k)i ]} (52)

under the constraint

n

∑
k=0
⟨ϕ(n−k)

i ∣ϕ(k)j ⟩ = 0. (53)

For zero-order, the solution is obtained from the ground state KS
equations. The second-order energy is variational in the first-order
wavefunction and is obtained as

E(2)[{ϕ(0)i },{ϕ
(1)
i }] =∑

ij
⟨ϕ(1)i ∣H

(0)δij −Λij∣ϕ(1)j ⟩

+∑
i

⎡
⎢
⎢
⎢
⎢
⎣

⟨ϕ(1)i ∣
δEpert

δ⟨ϕ(0)i ∣
+

δEpert

δ∣ϕ(0)i ⟩
∣ϕ(1)i ⟩

⎤
⎥
⎥
⎥
⎥
⎦

+
1
2 ∫

dr∫ dr′K(r, r′)n(1)(r)n(1)(r′).

(54)

The electron density is also expanded in powers of λ, and the first-
order term reads as

n(1)(r) =∑
i

fi[ϕ(0)∗i (r)ϕ(1)i (r) + ϕ(1)∗i (r)ϕ(0)i (r)]. (55)

The Lagrange multipliers Λij are the matrix elements of the zeroth-
order Hamiltonian, which is the KS Hamiltonian. Hence,

Λij = ⟨ϕ(0)i ∣H
(0)
∣ϕ(0)j ⟩, (56)

and the second-order energy kernel is

K(r, r′) = δ2EHxc[n]
δn(r)δn(r′)

∣

n(0)
, (57)

where EHxc represents the sum of the Hartree and the XC energy
functionals. Thus, the evaluation of the kernel requires the second-
order functional derivative of the XC functionals.

The second-order energy is variational with respect to {ϕ(1)i },
where the orthonormality condition of the total wavefunction gives
at the first-order

⟨ϕ(0)i ∣ϕ
(1)
j ⟩ + ⟨ϕ(1)i ∣ϕ

(0)
j ⟩ = 0, ∀i, j. (58)

This also implies the conservation of the total charge.
The perturbation functional can often be written as the expec-

tation value of a perturbation Hamiltonian

H(1) =
δEpert

δ⟨ϕ0
i ∣

+ ∫ dr′K(r, r′)n(1)(r′). (59)

However, the formulation through an arbitrary functional also
allows orbital specific perturbations. The stationary condition then
yields the inhomogeneous, non-linear system for {ϕ(1)i }, i.e.,

−∑
j
(H(0)δij −Λij)∣ϕ(1)j ⟩

= P(∫ dr′K(r, r′)n(1)(r′)∣ϕ(0)i ⟩ +
δEpert

δ⟨ϕ0
i ∣
), (60)
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where P = 1 −∑j ∣ϕ
(0)
j ⟩⟨ϕ

(0)
j ∣ is the projector upon the unoccupied

states. Note that the right-hand side still depends on the {ϕ(1)i } via
the perturbation density n(1). In our implementation, the problem
is solved directly using a preconditioned conjugate-gradient (CG)
minimization algorithm.

A. Polarizability
One case where the perturbation cannot be expressed in a

Hamiltonian form is the presence of an external electric field, which
couples with the electric polarization Pel = e⟨r⟩, where i⟨r⟩ is the
expectation value of the position operator for the system of N
electrons. In the case of periodic systems, the position operator is
ill-defined, and we use the modern theory of polarization in the
Γ-point-only to write the perturbation in terms of the Berry phase,

γα = Im log detQ(α), (61)

where the matrix is defined as

Q(α)ij = ⟨ϕi∣ exp[i2πh−1
α ⋅ r]∣ϕj⟩ (62)

and h = [a, b, c] is the 3 × 3 matrix defining the simulation cell and
hα = (aα, bα, cα).153–157 The electric dipole is then given by

Pel
α =

e
2π

hαγα. (63)

Through the coupling to an external electric field Eext, this induces a
perturbation of the type

λEpert[{ϕi}] = −∑
α

Eext
α Pel

α , (64)

where the perturbative parameter is the field component Eext
α . The

functional derivative δEpert/δ⟨ϕ(0)I ∣ can be evaluated using the for-
mula for the derivative of a matrix with respect to a generic vari-
able,152 which gives the perturbative term as

δ log detQ(α)

δ⟨ϕ(0)I ∣
=∑

j
(Q(α))

−1

ij
exp[i2πh−1

α ⋅ r]∣ϕj⟩. (65)

Once the first-order correction to the set of the KS orbitals has been
calculated, the induced polarization is

δPel
α = −∑

β

e
2π

hβIm
⎡
⎢
⎢
⎢
⎢
⎣

∑
ij
(⟨ϕβ(1)i ∣ exp[i2πh−1

α ⋅ r]∣ϕ
(0)
j ⟩

+ ⟨ϕ(0)i ∣ exp[i2πh−1
α ⋅ r]∣ϕ

β(1)
j ⟩)(Q(α))

−1

ij

⎤
⎥
⎥
⎥
⎥
⎦

Eβ, (66)

while the elements of the polarizability tensor are obtained as ααβ
= ∂Pel

α /∂Eβ.
The polarizability can be looked as the deformability of the elec-

tron cloud of the molecule by the electric field. In order for a molecu-
lar vibration to be Raman active, the vibration must be accompanied
by a change in the polarizability. In the usual Placzeck theory, ordi-
nary Raman scattering intensities can be expressed in terms of the
isotropic transition polarizability αi

= 1
3 Tr[α] and the anisotropic

transition polarizability αa
= ∑αβ

1
2(3ααβααβ − ααααββ).158 The

Raman scattering cross section can be related to the dynamical

autocorrelation function of the polarizability tensor. Along finite-
temperature AIMD simulations, the polarizability can be calculated
as a function of time.159,160 As the vibrational spectra are obtained by
the temporal Fourier transformation of the velocity autocorrelation
function, and the IR spectra from that of the dipole autocorrelation
function,161 the depolarized Raman intensity can be calculated from
the autocorrelation of the polarizability components.162

B. Nuclear magnetic resonance and electron
paramagnetic resonance spectroscopy

The development of the DFPT within the GAPW formalism
allows for an all-electron description, which is important when the
induced current density generated by an external static magnetic
perturbation is calculated. The so induced current density deter-
mines at any nucleus A the nuclear magnetic resonance (NMR)
chemical shift

σA
αβ =

1
c ∫
[

r − RA

∣r − RA∣3
× jα]

β
dr (67)

and, for systems with net electronic spin 1/2, the electron paramag-
netic resonance (EPR) g-tensor

gαβ = geδαβ + ΔgZKE
αβ + ΔgSO

αβ + ΔgSOO
αβ . (68)

In the above expressions, RA is the position of the nucleus, jα is the
current density induced by a constant external magnetic field applied
along the α axis, and ge is the free electron g-value. Among the dif-
ferent contributions to the g-tensor, the current density dependent
ones are the spin–orbit (SO) interaction,

ΔgSO
αβ =

ge − 1
c ∫ [j

↑

α(r ) ×∇V↑eff(r) − j
↓

α(r ) ×∇V↓eff(r)]βdr (69)

and the spin–other–orbit (SOO) interaction

ΔgSOO
αβ = 2∫ Bcorr

αβ (r)n
spin
(r)dr, (70)

where

Bcorr
αβ (r) =

1
c ∫
[

r′ − r
∣r′ − r∣3

× (jα(r
′
) − jspin

α (r
′
))]

β
dr′, (71)

which also depends on the spin density nspin and the spin-current
density jspin. Therein, V↑eff is an effective potential in which the spin
up electrons are thought to move (similarly V↓eff for spin down elec-
trons), whereas Bcorr

αβ is the β component of the magnetic field orig-
inating from the induced current density along α. The SO-coupling
is the leading correction term in the computation of the g-tensor. It
is relativistic in origin and therefore becomes much more important
for heavy elements. In the current CP2K implementation, the SO
term is obtained by integrating the induced spin-dependent current
densities and the gradient of the effective potential over the simu-
lation cell. The effective one-electron operator replaces the compu-
tationally demanding two-electrons integrals.163 A detailed discus-
sion on the impact of the various relativistic and SO approxima-
tions, which are implemented in the various codes, is provided by
Deyne et al.164
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In the GAPW representation, the induced current density is
decomposed with the same scheme applied for the electron den-
sity distinguishing among the soft contribution to the total current
density, and the local hard and local soft contributions, i.e.,

j(r) = j̃(r) +∑
A
(jA(r) + j̃A(r)). (72)

In the linear response approach, the perturbation Hamiltonian at the
first-order in the field strength is

H(1) = e
m
p ⋅A(r), (73)

where p is the momentum operator and A is the vector potential
representing the field B. Thus,

A(r) =
1
2
(r − d(r)) × B, (74)

with the cyclic variable d(r) being the gauge origin. The induced cur-
rent density is calculated as the sum of orbital contributions ji and
can be separated in a diamagnetic term jdi (r) =

e2

mA(r)∣ϕ(0)i (r)∣
2

and a paramagnetic term jpi (r) =
e2

m ⟨ϕ
(0)
i ∣[p∣r⟩⟨r∣ + ∣r⟩⟨r∣p]∣ϕ(1)i ⟩.

Both contributions individually are gauge dependent, whereas the
total current is gauge-independent. The position operator appears
in the definition of the perturbation operators and of the current
density. In order to be able to deal with periodic systems, where
the multiplicative position operator is not a valid operator, first
we perform a unitary transformation of the ground state orbitals
to obtain their maximally localized Wannier functions (MLWFs)
counterpart.165–167 Hence, we use the alternative definition of the
position operator, which is unique for each localized orbital and
showing a sawtooth-shaped profile centered at the orbital’s Wannier
center.168–170

Since we work with real ground state MOs, in the unperturbed
state, the current density vanishes. Moreover, the first-order pertur-
bation wavefunction is purely imaginary, which results in a vanish-
ing first-order change in the electronic density n(1). This significantly
simplifies the perturbation energy functional, since the second-order
energy kernel can be skipped. The system of linear equations to
determine the matrix of the expansion coefficients of the linear
response orbitals C(1) reads as

− i∑
iμ
(H(0)νμ δij − Sνμ⟨ϕ(0)i ∣H

(0)
∣ϕ(0)j ⟩)Cμi =∑

μ
H(1)νμ(j)C

(0)
μj , (75)

where i and j are the orbital indexes, ν and μ are the basis set function
indexes, and Sνμ is an element of the overlap matrix. The optional
subindex (j), labeling the matrix element of the perturbation oper-
ator, indicates that the perturbation might be orbital dependent. In
our CP2K implementation,43 the formalism proposed by Sebastiani
et al. is employed,168,169,171 i.e., we split the perturbation in three
types of operators, which are L = (r − dj) × p, the orbital angular
momentum operator p; the momentum operator; and Δi = (di − dj)
× p, the full correction operator. The vector dj is the Wannier center
associated with the unperturbed jth orbital, thus making L and Δi
dependent on the unperturbed orbital to which they are applied. By
using the Wannier center as a relative origin in the definition of L, we
introduce an individual reference system, which is then corrected by
Δi. As a consequence, the response orbitals are given by nine sets

of expansion coefficients, as for each operator all three Cartesian
components need to be individually considered. The evaluation of
the orbital angular momentum contributions and of the momentum
contributions can be done at the computational cost of just one total
energy calculation. The full correction term, instead, requires one
such calculation for each electronic state. This term does not vanish
unless all di are equal. However, in most circumstances, this correc-
tion is expected to be small, since it describes the reaction of state i to
the perturbation of state j, which becomes negligible when the two
states are far away. Once all contributions have been calculated, the
x-component of the current density induced by the magnetic field
along y is

jxy(r) = −
1
2c∑iνμ

[C(0)νi (C
Ly
μi + (d(r) − di)xCpz

μi

− (d(r) − di)zCpx
μi − CΔiy

μi ) × (∇xφν(r)φμ(r)

− φν(r)∇xφμ(r))] + (r − d(r))zn(0)(r)), (76)

where the first term is the paramagnetic contribution and the second
term is the diamagnetic one.

The convergence of the magnetic properties with respect to
the Gaussian basis set size is strongly dependent on the choice of
the gauge. The available options in CP2K are the individual gauge
for atoms in molecules (IGAIM) approach introduced by Keith and
Bader,172 and the continuous set of gauge transformation (CSGT)
approach.173 The diamagnetic part of the current density vanishes
identically when the CSGT approach is used, i.e., d(r = r). Yet,
this advantage is weakened by the rich basis set required to obtain
an accurate description of the current density close to the nuclei,
which typically affects the accuracy within the NMR chemical shift.
In the IGAIM approach, however, the gauge is taken at the closer
nuclear center. Condensed-phase applications involve the calcula-
tion of NMR spectra of energy-storage materials,174,175 biomolec-
ular176–178 and hydrogen-bonded systems,179–182 as well as the
Overhauser dynamic nuclear polarization in solids.183 Large-scale
computations of NMR chemical shifts for extended paramagnetic
solids were reported by Mondal et al.44 They showed that the
contact, pseudocontact, and orbital-shift contributions to param-
agnetic NMR can be calculated by combining hyperfine couplings
obtained by hybrid functionals with g-tensors and orbital shieldings
computed using gradient-corrected functionals.184

VII. TIME-DEPENDENT DENSITY FUNCTIONAL THEORY
The dynamics and properties of many-body systems in the

presence of time-dependent potentials, such as electric or magnetic
fields, can be investigated via TD-DFT.

A. Linear-response time-dependent density
functional theory

Linear-response TD-DFT (LR-TDDFT)185 is an inexpensive
correlated method to compute vertical transition energies and oscil-
lator strengths between the ground and singly excited electronic
states. Optical properties are computed as a linear-response of the
system to a perturbation caused by an applied weak electro-magnetic
field.
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The current implementation relies on Tamm-Dancoff and
adiabatic approximations.186 The Tamm-Dancoff approximation
ignores electron de-excitation channels,187,188 thus reducing the LR-
TDDFT equations to a standard Hermitian eigenproblem,189 i.e.,

AX = ωX, (77)

where ω is the transition energy, X is a response eigenvector, and A
is a response operator. In addition, the adiabatic approximation pos-
tulates the independence of the employed XC functional of time and
leads to the following form for the matrix elements of the response
operator:190

Aiaσ,jbτ = δijδabδστ(ϵaσ − ϵiσ) + (iσaσ ∣jτbτ)
− cHFXδστ(iσ jσ ∣aτbτ) + (iσaσ ∣ fxc;στ ∣jτbτ). (78)

In the above equation, the indices i and j stand for occupied spin-
orbitals, whereas a and b indicated virtual spin-orbitals, and σ
and τ refers to specific spin components. The terms (iσaσ |jτbτ)
and (iσaσ | f xc;στ |jτbτ) are standard electron repulsion and XC inte-
grals over KS orbital functions {ϕ(r)} with corresponding KS orbital
energies ϵ; hence,

(iσaσ ∣jτbτ) = ∫ φ∗iσ(r)φaσ(r)
1

∣r − r′∣
φ∗jτ(r

′
)φbτ(r

′
)drdr′ (79a)

and

(iσaσ ∣ fxc;στ ∣jτbτ) = ∫ φ∗iσ(r)φaσ(r)fxc;στ(r, r′)

×φ∗jτ(r
′
)φbτ(r

′
)drdr′. (79b)

Here, the XC kernel f xc;στ(r, r′) is simply the second functional
derivative of the XC functional Exc over the ground state electron
density n(0)(r);191 hence,

fxc;στ(r, r′) =
δ2Exc[n](r)

δnσ(r′)δnτ(r′)
∣

n=n(0)

. (80)

To solve Eq. (77), the current implementation uses a block David-
son iterative method.192 This scheme is flexible enough and allows us
to tune the performance of the algorithm. In particular, it supports
hybrid exchange functionals along with many acceleration tech-
niques (see Sec. III), such as integral screening,51 truncated Coulomb
operator,52 and ADMM.53 Whereas in most cases the same XC func-
tional is used to compute both the ground state electron density
and the XC kernel, separate functionals are also supported. This
can be used, for instance, to apply a long-term correction to the
truncated Coulomb operator during the LR-TDDFT stage,52 when
such correction has been omitted during the reference ground state
calculation. The action of the response operator on the trial vec-
tor X for a number of excited states may also be computed simul-
taneously. This improves load-balancing and reduces communica-
tion costs, allowing a larger number of CPU cores to be effectively
utilized.

1. Applications
The favorable scaling and performance of the LR-TDDFPT

code have been exploited to calculate the excitation energies of var-
ious systems with 1D, 2D, and 3D periodicities, such as cationic

defects in aluminosilicate imogolite nanotubes,193 as well as surface
and bulk canonical vacancy defects in MgO and HfO2.186 Through-
out, the dependence of results on the fraction of Hartree–Fock
exchange was explored and the accuracy of the ADMM approxima-
tion was verified. The performance was found to be comparable to
ground state calculations for systems of ≈1000 atoms, which were
shown to be sufficient to converge localized transitions from isolated
defects, within these medium to wide bandgap materials.

B. Real-time time-dependent density functional
theory and Ehrenfest dynamics

Alternative to perturbation based methods, real-time
propagation-based TDDFT is also available in CP2K. The real-time
TDDFT formalism allows us to investigate non-linear effects and
can be used to gain direct insights into the dynamics of processes
driven by the electron dynamics. For systems in which the coupling
between electronic and nuclear motion is of importance, CP2K pro-
vides the option to propagate cores and electrons simultaneously
using the Ehrenfest scheme. Both methods are implemented in a
cubic- and linear scaling form. The cubic scaling implementation
is based on MO coefficients (MO-RTP), whereas the linear scaling
version acts on the density matrix (P-RTP).

While the derivation of the required equations for origin inde-
pendent basis functions is rather straightforward, additional terms
arise for atom centered basis sets.194 The time-evolution of the MO
coefficients in a non-orthonormal Gaussian basis reads as

ȧ j
α =∑

βγ
S−1
αβ (iHβγ + Bβγ)a

j
α, (81)

whereas the corresponding nuclear equations of motion is given by

MIR̈I = −
∂U(R, t)

∂RI
+

Ne

∑
j=1
∑
α,β

a j
α
∗
(DI

αβ −
∂Hαβ

∂RI
)a j

β. (82)

Therein, S and H are the overlap and KS matrices, whereas MI and
RI are the position and mass of ion I, and U(R,t) is the potential
energy of the ion–ion interaction. The terms involving these vari-
ables represent the basis set independent part of the equations of
motion. The additional terms containing matrices B and D are aris-
ing as a consequence of the origin dependence and are defined as
follows:

DI
= BI+

(S−1H − iS−1B) + iCI+ + (HS−1 + iB+S−1
)BI + iCI , (83)

with

Bαβ = ⟨ϕα∣
d
dt
ϕβ⟩, B+

αβ = ⟨
d
dt
ϕα∣ϕβ⟩,

BI
= ⟨ϕα∣

d
dRI ϕβ⟩, BI+

= ⟨
d

dRI ϕα∣ϕβ⟩,

CI
= ⟨

d
dt
ϕα∣

d
dRI ϕβ⟩, CI+

= ⟨
d

dRI ϕα∣
d
dt
ϕβ⟩.

(84)

For simulations with fixed ionic positions, i.e., when only the elec-
tronic wavefunction is propagated, the B and D terms are vanishing
and Ref. 81 simplifies to just the KS term. The two most important
propagators for the electronic wavefunction in CP2K are the expo-
nential midpoint and the enforced time reversal symmetry (ETRS)
propagators. Both propagators are based on matrix exponentials.
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The explicit computation of it, however, can be easily avoided for
both MO-RTP and P-RTP techniques. Within the MO-RTP scheme,
the construction of a Krylov subspace Kn(X, MO) together with
Arnoldi’s method allows for the direct computation of the action
of the propagator on the MOs at a computational complexity of
O(N2M). For the P-RTP approach, the exponential is applied from
both sides, which allows the expansion into a series similar to the
Baker–Campbell–Hausdorff expansion. This expansion is rapidly
converging and in theory only requires sparse matrix–matrix mul-
tiplications. Unfortunately, pure linear scaling Ehrenfest dynamics
seems to be impossible due to the non-exponential decay of the
density matrix during such simulations.195 This leads to a densifi-
cation of the involved matrices and eventually cubic scaling with
system size. However, the linear scaling version can be coupled with
subsystem DFT to achieve true linear scaling behavior.

In subsystem DFT, as implemented in CP2K, follows the
approach of Gordon and Kim.196,197 In this approach, the different
subsystems are minimized independently with the XC functional of
choice. The coupling between the different subsystem is added via a
correction term using a kinetic energy functional,

Ecorr = Es[ρ] −
nsub

∑
i

Es[ρi], (85)

where ρ is the electron density of the full system and ρi is the elec-
tron density of subsystem i. Using an orbital-free density functional
to compute the interaction energy does not affect the structure of
the overlap, which is block diagonal in this approach. If P-RTP is
applied to the Kim–Gordon density matrix, the block diagonal struc-
ture is preserved and linear scaling with the number of subsystems
is achieved.

VIII. DIAGONALIZATION-BASED AND LOW-SCALING
EIGENSOLVER

After the initial Hamiltonian matrix for the selected method has
been built by CP2K, such as the KS matrix K in the case of a DFT-
based method using the QUICKSTEP module, the calculation of the
total (ground state) energy for the given atomic configuration is the
next task. This requires an iterative self-consistent field (SCF) proce-
dure as the Hamiltonian depends usually on the electronic density.
In each SCF step, the eigenvalues and at least the eigenvectors of the
occupied MOs have to be calculated. Various eigensolver schemes
are provided by CP2K for that task:

● Traditional Diagonalization (TD),
● Pseudodiagonalization (PD),198

● Orbital Transformation (OT) method,199 and
● purification methods.200

The latter method, OT, is the method of choice concerning compu-
tational efficiency and scalability for growing system sizes. However,
OT requires fixed integer MO occupations. Therefore, it is not appli-
cable for systems with a very small or no bandgap, such as metallic
systems, which need fractional (“smeared”) MO occupations. For
very large systems in which even the scaling of the OT method
becomes unfavorable, one has to resort to linear-scaling methods
(see Sec. VIII E). By contrast, TD can also be applied with fractional
MO occupations, but its cubic-scaling (N3) limits the accessible

system sizes. In that respect, PD may provide significant speed-
ups (factor of 2 or more) once a pre-converged solution has been
obtained with TD.

In the following, we will restrict the description of the imple-
mented eigensolver methods to spin-restricted systems, since the
generalization to spin-unrestricted, i.e., spin-polarized systems is
straightforward and CP2K can deal with both types of systems using
each of these methods.

A. Traditional diagonalization
The TD scheme in CP2K employs an eigensolver either from

the parallel program library ScaLAPACK (Scalable Linear Algebra
PACKage)201 or from the ELPA (Eigenvalue soLvers for Petascale
Applications)202,203 library to solve the general eigenvalue problem

K C = SC ϵ, (86)

where K is the KS and S is the overlap matrix. The eigenvectors
C represent the MO coefficients, and ϵ are the corresponding MO
eigenvalues. Unlike to PW codes, the overlap matrix S is not the unit
matrix, since CP2K/QUICKSTEP employs atom-centered basis sets of
non-orthogonal Gaussian-type functions (see Sec. II C). Thus, the
eigenvalue problem is transformed to its special form

K C = UTU C ϵ, (87a)

(UT
)
−1 K U−1 C′ = C′ ϵ, (87b)

K′ C′ = C′ ϵ (87c)

using a Cholesky decomposition of the overlap matrix

S = UTU (88)

as the default method for that purpose. Now, (87c) can simply be
solved by a diagonalization ofK′. The MO coefficient matrixC in the
non-orthogonal basis is finally obtained by the back-transformation,

C′ = U C. (89)

Alternatively, a symmetric Löwdin orthogonalization instead of a
Cholesky decomposition can be applied,204 i.e.,

U = S1/2. (90)

On the one hand, the calculation of S1/2 as implemented in CP2K
involves, however, a diagonalization of S, which is computationally
more expensive than a Cholesky decomposition. On the other hand,
however, linear dependencies in the basis set introduced by small
Gaussian function exponents can be detected and eliminated when
S is diagonalized. Eigenvalues of S smaller than 10−5 usually indi-
cate significant linear dependencies in the basis set and filtering of
the corresponding eigenvectors can help ameliorate numerical dif-
ficulties during the SCF iteration procedure. For small systems, the
choice of the orthogonalization has no crucial impact on the perfor-
mance since it has to be performed only once for each configuration
during the initialization of the SCF run.
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Only the occupied MOs are required for the build-up of the
density matrix P in the AO basis

P = 2CoccCT
occ. (91)

This saves not only memory but also computational time since the
orthonormalization of the eigenvectors is a time-consuming step.
Usually, only 10%–20% of the orbitals are occupied when standard
Gaussian basis sets are employed with CP2K.

The TD scheme is combined with methods to improve the con-
vergence of the SCF iteration procedure. The most efficient SCF
convergence acceleration is achieved by the direct inversion in the
iterative sub-space (DIIS),205,206 exploiting the commutator relation

e = K PS − SPK (92)

between the KS and the density matrix, where the error matrix e
is zero for the converged density. The DIIS method can be very
efficient in the number of iterations required to reach convergence
starting from a sufficiently pre-converged density, which is signifi-
cant if the cost of constructing the Hamiltonian matrix is larger than
the cost of diagonalization.

B. Pseudodiagonalization
Alternative to TD, a pseudodiagonalization can be applied as

soon as a sufficiently pre-converged wavefunction is obtained.198

The KS matrix KAO in the AO basis is transformed into the MO
basis in each SCF step via

KMO
= CTKAOC (93)

using the MO coefficients C from the preceding SCF step. The con-
verged KMO matrix using TD is a diagonal matrix, and the eigenval-
ues are its diagonal elements. Already after a few SCF iteration steps,
the KMO matrix becomes diagonally dominant. Moreover, the KMO

matrix shows the following natural blocking

(
oo ou
uo uu) (94)

due to the two MO sub-sets of C, namely, the occupied (o) and the
unoccupied (u) MOs. The eigenvectors are used during the SCF iter-
ation to calculate the new density matrix [see Eq. (91)], whereas the
eigenvalues are not needed. The total energy only depends on the
occupied MOs, and thus, a block diagonalization, which decouples
the occupied and unoccupied MOs, allows us to converge the wave-
functions. As a consequence, only all elements of the block ou or uo
have to become zero, since KMO is a symmetric matrix. Hence, the
transformation into the MO basis

KMO
ou = C

T
oK

AOCu (95)

only has to be performed for that matrix block. Then, the decoupling
can be achieved iteratively by consecutive 2 × 2 Jacobi rotations,
i.e.,

θ =
ϵq − ϵp

2 KMO
pq

, (96a)

t =
sgn(θ)

∣θ∣ +
√

1 + θ2
, (96b)

c =
1

√
t2 + 1

, (96c)

s = tc, (96d)

C̃p = cCp − sCq, (96e)

C̃q = sCp + cCq, (96f)

where the angle of rotation θ is determined by the difference of the
eigenvalues of the MOs p and q divided by the corresponding matrix
element KMO

pq in the ou or uo block. The Jacobi rotations are compu-
tationally cheap as they can be performed with BLAS level 1 routines
(DSCAL and DAXPY). The oo block is significantly smaller than the
uu block, since only 10%–20% of the MOs are occupied using a
standard basis set. Consequently, the ou or uo block also includes
only 10%–20% of the KMO matrix. Furthermore, an expensive re-
orthonormalization of the MO eigenvectors is not needed, since the
Jacobi rotations preserve the orthonormality of the MO eigenvec-
tors. Moreover, the number of non-zero blocks decreases rapidly
when convergence is approached, which results in a decrease in the
compute time for the PD part.

C. Orbital transformations
An alternative to the just described diagonalization-based algo-

rithms is techniques that rely on direct minimization of the elec-
tronic energy functional.199,207–212 Convergence of this approach can
in principle be guaranteed if the energy can be reduced in each
step. The direct minimization approach is thus more robust. It also
replaces the diagonalization step by having fewer matrix–matrix
multiplications, significantly reducing the time-to-solution. This is
of great importance for many practical problems, in particular, large
systems that are difficult or sometimes even impossible to tackle
with DIIS-like methods. However, preconditioners are often used in
conjunction with direct energy minimization algorithms to facilitate
faster and smoother convergence.

The calculation of the total energy within electronic struc-
ture theory can be formulated variationally in terms of an energy
functional of the occupied single-particle orbitals that are con-
strained with respect to an orthogonality condition. With M orbitals,
C ∈ RN×M is given in a nonorthogonal basis consisting of N basis
functions {ϕi}

N
i=1 and its associated N × N overlap matrix S, with

element Sij = ⟨ϕi|ϕj⟩. The corresponding constrained minimization
problem is expressed as

C∗ = arg min
C
{E[C] ∣ CTSC = 1}, (97)

where E[C] is an energy functional, C∗ is the minimizer of E[C] that
fulfills the condition of orthogonality CTSC = 1, whereas argmin
stands for the argument of the minimum. The ground state energy is
finally obtained as E[C∗]. The form of the energy functional E[C] is
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determined by the particular electronic structure theory used; in the
case of hybrid Hartree–Fock/DFT, the equation reads as

EHF/DFT[C] = Tr[Ph] +
1
2

Tr[P(J[P] + αHFK[P])] + EXC[P],

(98)

where P = CCT is the density matrix, whereas h, J, and K are the
core Hamiltonian, the Coulomb, and Hartree–Fock exact exchange
matrices, respectively, and EXC[P] is the XC energy.

Enforcing the orthogonality constraints within an efficient
scheme poses a major hurdle in the direct minimization of E[C].
Hence, in the following, we describe two different approaches imple-
mented in CP2K.199,212

1. Orthogonality constraints

a. Orbital transformation functions: OT/diag and OT/Taylor.
To impose the orthogonality constraints on the orbitals, VandeVon-
dele and Hutter reformulated the non-linear constraint on C [see
Eq. (97)] by a linear constraint on the auxiliary variable X via

X∗ = arg min
X
{E[C(X)] ∣ XTSC0 = 0} (99)

and

C∗ = C(X∗), (100)

where X ∈ RN×M and C0 is a set of initial orbitals that fulfill the
orthogonality constraints CT

0 SC0 = 1.199 The OT is parametrized as
follows:

C(X) = C0 cosU + XU−1 sinU, (101)

where U = XTSX1/2. This parametrization ensures that CTXSCX = 1,
for all X satisfying the constraints XTSC0 = 0. The matrix functions
cosU and U−1 sinU are evaluated either directly by diagonalization
or by a truncated Taylor expansion in XTSX.213

b. Orbital transformation based on a refinement expansion:
OT/IR. In this method, Weber et al. replaced the constrained func-
tional by an equivalent unconstrained functional [C→ f (Z)].212 The
transformed minimization problem in Eq. (97) is then given by

Z∗ = arg min
Z

E[f (Z)] (102)

and

C∗ = f (Z∗), (103)

where Z ∈ RN×M . The constraints have been mapped onto the matrix
function f (Z), which fulfills the orthogonality constraint f T(Z)Sf (Z)
= 1 for all matrices Z. The main idea of this approach is to approxi-
mate the OT in Eq. (102) by f n(Z) ≈ f (Z), where f n(Z) is an approxi-
mate constraint function, which is correct up to some order n + 1 in
δZ = Z − Z0, where ZT

0 SZ0 = 1. The functions derived by Niklasson
for the iterative refinement of an approximate inverse matrix fac-
torization are used to approximate f (Z).214 The first few refinement
functions are given by

f1(Z) =
1
2
Z(3 − Y), (104a)

f2(Z) =
1
8
Z(15 − 10Y + 3Y2

), (104b)

f3(Z) =
1

16
Z(35 − 35Y + 21Y2

− 5Y3
), (104c)

⋯ (104d)

where Y = ZTSZ and Z = Z0 + δZ. It can be shown that

f T
n (Z)Sfn(Z) − 1 = O(δZn+1

). (105)

Using this general ansatz for f n(Z), it is possible to extend the
accuracy to any finite order recursively by an iterative refinement
expansion f n(⋯f n(Z)⋯).

2. Minimizer

a. Direct inversion of the iterative subspace. The DIIS method
introduced by Pulay is an extrapolation technique based on mini-
mizing the norm of a linear combination of gradient vectors.206 The
problem is given by

c∗ = arg min
c
{∥

m

∑
i=1

cigi∥ ∣
m

∑
i=1

ci = 1}, (106)

where gi is an error vector and c∗ are the optimal coefficients.
The next orbital guess xm+1 is obtained by the linear com-

bination of the previous points using the optimal coefficients
c∗, i.e.,

xm+1 =
m

∑
i=1

c∗i (xi − τfi), (107)

where τ is an arbitrary step size chosen for the DIIS method. The
method simplifies to a steepest descent (SD) for the initial step m = 1.
While the DIIS method converges very fast in most of the cases, it is
not particularly robust. In CP2K, the DIIS method is modified to
switch to SD when a DIIS step brings the solution toward an ascent
direction. This safeguard makes DIIS more robust and is possible
because the gradient of the energy functional is available.

b. Non-linear conjugate gradient minimization. Non-linear
CG leads to a robust, efficient, and numerically stable energy min-
imization scheme. In non-linear CG, the residual is set to the nega-
tion of the gradient ri = −gi and the search direction is computed by
Gram–Schmidt conjugation of the residuals, i.e.,

di+1 = ri+1 + βi+1di. (108)

Several choices for updating βi+1 are available, and the Polak–Ribière
variant with restart is used in CP2K,215,216

βi+1 = max(
rT

i+1(ri+1 − ri)

rT
i ri

, 0). (109)

Similar to linear CG, a step length αi is found that minimizes the
energy function f (xi + αidi) using an approximate line search. The
updated position becomes xi+1 = xi + αidi. In QUICKSTEP, a few
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different line searches are implemented. The most robust is the
golden section line search,217 but the default quadratic interpolation
along the search direction suffices in most cases. Regarding time-
to-solution, the minimization performed with the latter quadratic
interpolation is in general significantly faster than the golden section
line search.

Non-linear CGs are generally preconditioned by choosing
an appropriate preconditioner M that approximates f ′′ (see
Sec. VIII C 3).

c. Quasi-Newton method. Newton’s method can also be used
to minimize the energy functional. The method is scale invariant,
and the zigzag behavior that can be seen in the SD method is not
present. The iteration for Newton’s method is given by

xk+1 = xk − βH(xk)
−1fk, (110)

whereH is the Hessian matrix. On the one hand, the method exhibits
super-linear convergence when the initial guess is close to the solu-
tion and β = 1, but, on the other hand, when the initial guess is
further away from the solution, Newton’s method may diverge. This
divergent behavior can be suppressed by the introduction of line
search or backtracking. As they require the inverse Hessian of the
energy functional, the full Newton’s method is in general too time-
consuming or difficult to use. Quasi-Newton methods,218 however,
are advantageous alternatives to Newton’s method when the Hes-
sian is unavailable or is too expensive to compute. In those methods,
an approximate Hessian is updated by analyzing successive gradient
vectors. A quasi-Newton step is determined by

xk+1 = xk − βGkfk, (111)

where Gk is the approximate inverse Hessian at step k. Different
update formulas exist to compute Gk.219 In QUICKSTEP, the Broyden’s
type 2 update is implemented to construct the approximate inverse
Hessian with an adaptive scheme for estimating the curvature of the
energy functional to increase the performance.220

3. Preconditioners

a. Preconditioning the non-linear minimization. Gradient
based OT methods are guaranteed to converge but will exhibit slow
convergence behavior if not appropriately preconditioned. A good
reference for the optimization can be constructed from the gen-
eralized eigenvalue problem under the orthogonality constraint of
Eq. (97) and its approximate second derivative

∂2E
∂Xαi∂Xβj

= 2Hαβδij − 2Sαβδijϵ0
i . (112)

Therefore, close to convergence, the best preconditioners would be
of the form

(H − Sϵ0
i )
−1
αβ(

δE
δXβi
). (113)

As this form is impractical, requiring a different preconditioner for
each orbital, a single positive definite preconditioning matrix P is
constructed approximating

P(H − Sϵ)x − x ≈ 0. (114)

In CP2K, the closest approximation to this form is the FULL_ALL
preconditioner. It performs an orbital dependent eigenvalue shift
of H. In this way, positive definiteness is ensured with minimal
modifications. The downside is that the eigenvalues of H have to
be computed at least once using diagonalization and thus scales as
O(N3

).
To overcome this bottleneck, several more approximate though

lower scaling preconditioners have been implemented within CP2K.
The simplest assume ϵ = 1 andH =T, withT being the kinetic energy
matrix (FULL_KINETIC) or even H = 0 (FULL_S_INVERSE) as viable
approximations. These preconditioners are obviously less sophisti-
cated. However, they are linear-scaling in their construction as S and
T are sparse and still lead to accelerated convergence. Hence, these
preconditioners are suitable for large-scale simulations.

For many systems, the best trade-off between the qual-
ity and the cost of the preconditioner is obtained with the
FULL_SINGLE_INVERSE preconditioner. Instead of shifting all
orbitals separately, only the occupied eigenvalues are inverted. Thus,
making the orbitals closest to the bandgap most active in the opti-
mization. The inversion of the spectrum can be done without the
need for diagonalization by

P = H − 2SC0(CT
0 HC0 + δ)CT

0 S − ϵS, (115)

where δ represents an additional shift depending on the HOMO
energy, which ensures positive definiteness of the preconditioner
matrix. It is important to note that the construction of this precon-
ditioner matrix can be done with a complexity of O(NM2

) in the
dense case and is therefore of the same complexity as the rest of the
OT algorithm.

b. Reduced scaling and approximate preconditioning. All of the
abovementioned preconditioners still require the inversion of the
preconditioning matrix P. In dense matrix algebra, this leads to an
O(N3

) scaling behavior independent of the chosen preconditioner.
For large systems, the inversion of P will become the dominant part
of the calculation when low-scaling preconditioners are used. As
Schiffmann and VandeVondele had shown,221 sparse matrix tech-
niques are applicable for the inversion of the low-scaling precon-
ditioners and can be activated using the INVERSE_UPDATE option
as the preconditioner solver. By construction, the preconditioner
matrix is symmetric and positive definite. This allows for the use of
Hotelling’s iterations to compute the inverse of P as

P−1
i+1 = αP

−1
i (2I − PαiP−1

i ). (116)

Generally, the resulting approximants to the inverse become denser
and denser.222 In CP2K, this is dealt with aggressive filtering on
P−1

i+1. Unfortunately, there are limits to the filtering threshold. While
the efficiency of the preconditioner is not significantly affected by
the loss of accuracy (see Sec. XV B), the Hotelling iterations may
eventually become unstable.223

Using a special way to determine the initial alpha based on
the extremal eigenvalues of PP−1

0 , it can be shown that any posi-
tive definite matrix can be used as the initial guess for the Hotelling
iterations.224 For AIMD simulations or geometry optimizations,
this means the previous inverse can be used as the initial guess
as the changes in P are expected to be small.225 Therefore, only
very few iterations are required until convergence after the initial
approximation for the inverse is obtained.
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D. Purification methods
Linear-scaling DFT calculations can also be achieved by puri-

fying the KS matrix K directly into the density matrix P without
using the orbitals C explicitly.200 These density matrix-based meth-
ods exploit the fact that the KS matrix K and the density matrix P
have by definition the same eigenvectors C and that a purification
maps eigenvalues ϵi of K to eigenvalues fi of P via the Fermi–Dirac
function

fi =
1

exp( ϵi−μ
kBT ) + 1

, (117)

with the chemical potential μ, the Boltzmann constant kB, and elec-
tron temperature T. In practice, the purification is computed by
an iterative procedure that is constructed to yield a linear-scaling
method for sparse KS matrices. By construction, such purifications
are usually grand-canonical purifications so that additional mea-
sures such as modifications to the algorithms or additional iterations
to find the proper value of the chemical potential are necessary to
allow for canonical ensembles. In CP2K, the trace-resetting fourth-
order method (TRS4226), the trace-conserving second order method
(TC2227), and the purification via the sign function (SIGN115) are
available. Additionally, CP2K implements an interface to the PEXSI
(Pole EXpansion and Selected Inversion) library,228–231 which allows
us to evaluate selected elements of the density matrix as the Fermi–
Dirac function of the KS matrix via a pole expansion.

E. Sign-method
The sign function of a matrix

sign(A) = A(A2
)
−1/2 (118)

can be used as a starting point for the construction of various linear-
scaling algorithms.232 The relation

sign(0 A
I 0) = sign( 0 A1/2

A−1/2 0
) (119)

together with iterative methods for the sign function, such as the
Newton–Schulz iteration, is used by default in CP2K for linear-
scaling matrix inversions and (inverse) square roots of matri-
ces.233,234 Several orders of iterations are available: the second-order
Newton–Schulz iteration as well as third-order and fifth-order iter-
ations based on higher-order Padé-approximants.224,232,235

The sign function can also be used for the purification of the
Kohn–Sham matrix K into the density matrix P, i.e., via the relation

P =
1
2
(I − sign(S−1K − μI))S−1. (120)

Within CP2K, the linear-scaling calculation of the sign-function is
implemented up to seventh-order based on Padé-approximants. For
example, the fifth-order iteration has the form

X0 = S−1K − μI, (121a)

Xk+1 =
Xk

128
(35X8

k − 180X6
k + 378X4

k − 420X2
k + 315), (121b)

lim
k→∞

Xk = sign(S−1K − μI) (121c)

FIG. 6. Wall time for the calculation of the computationally dominating matrix-
sqrt (blue, boxes) and matrix-sign (red, circles) functions as a function of matrix
truncation threshold ϵfilter for the STMV virus. The latter contains more than one
million atoms and was simulated using the periodic implementation in CP2K of
the GFN-xTB model.236 The fifth-order sign-function iteration of Eq. (121a) and
the third-order sqrt-function iterations have been used. The calculations have
been performed with 256 nodes (10 240 CPU-cores) of the Noctua system at the
Paderborn Center for Parallel Computing (PC2).

and is implemented in CP2K with just four matrix multiplications
per iteration. After each matrix multiplication, all matrix elements
smaller than a threshold ϵfilter are flushed to zero to retain spar-
sity. The scaling of the wall-clock time for the computation of
the sign- and sqrt-functions to simulate the STMV virus in water
solution using the Geometry, Frequency, Noncovalent, eXtended
Tight-Binding (GFN-xTB) Hamiltonian is shown in Fig. 6.195 The
drastic speed-up of the calculation, when increasing the threshold
ϵfilter, immediately suggests the combination of sign-matrix iteration
based linear-scaling DFT algorithms with the ideas of approximate
computing (AC), as discussed in Sec. XV B.

Recently, a new iterative scheme for the inverse p-th of a
matrix has been developed, which also allows us to directly eval-
uate the density matrix via the sign function in Eq. (118).224 An
arbitrary-order implementation of this scheme is also available in
CP2K.

F. Submatrix method
In addition to the sign method, the submatrix method pre-

sented in Ref. 222 has been implemented in CP2K as an alternative
approach to calculate the density matrix P from the KS matrix K.
Instead of operating on the entire matrix, calculations are performed
on principal submatrices thereof. Each of these submatrices cov-
ers a set of atoms that originates from the same block of the KS
matrix in the DBCSR-format, as well as those atoms in their direct
neighborhood whose basis functions are overlapping. As a result,
the submatrices are much smaller than the KS matrix but relatively
dense. For large systems, the size of the submatrices is independent
of the overall system size so that a linear-scaling method immedi-
ately results from this construction. Purification of the submatrices
can be performed either using iterative schemes to compute the sign
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FIG. 7. Comparison of the wall time required for the purification using the submatrix
method (red circles, with a direct eigendecomposition for the density matrix of the
submatrices) and the second order Newton–Schulz sign iteration (blue boxes) for
different relative errors in the total energy after one SCF iteration. The correspond-
ing reference energy has been computed by setting ϵfilter = 10−16. All calculations
have been performed on a system consisting of 6192 H2O molecules, using KS-
DFT together with a SZV basis set, utilizing two compute nodes (80 CPU-cores) of
the “Noctua” system at PC2.

function (see Sec. VIII E) or via a direct eigendecomposition. The
submatrix method provides an approximation of the density matrix
P, whose quality and computational cost depend on the truncation
threshold ϵfilter used during the SCF iterations. Figure 7 compares
the accuracy provided and wall time required by the submatrix
method with the accuracy and wall time of a Newton–Schulz sign
iteration.

IX. LOCALIZED MOLECULAR ORBITALS
Spatially localized molecular orbitals (LMOs), also known as

MLWFs in solid state physics and materials science,165,167 are widely
used to visualize chemical bonding between atoms, help classify
bonds, and thus understand electronic structure origins of observed
properties of atomistic systems (see Sec. XI A). Furthermore, local-
ized orbitals are a key ingredient in multiple local electronic struc-
ture methods that dramatically reduce the computational cost of
modeling electronic properties of large atomistic systems. LMOs
are also important to many other electronic structure methods that
require local states such as XAS spectra modeling or dispersion-
corrected XC functionals based on atomic polarizabilities.

A. Localization of orthogonal and non-orthogonal
molecular orbitals

CP2K offers a variety of localization methods, in which LMOs
|j⟩ are constructed by finding a unitary transformation A of canoni-
cal MOs |i0⟩, either occupied or virtual, i.e.,

∣j⟩ =∑
i
∣i0⟩Aij, (122)

which minimizes the spread of individual orbitals. CP2K uses the
localization functional proposed by Resta,156 which was generalized
by Berghold et al. to periodic cells of any shape and symmetry,

ΩL(A) = −∑K∑i ωK ∣zK
i ∣

2, (123a)

zK
i =∑mn AmiBK

mnAni, (123b)

BK
mn = ⟨m0∣eiGK ⋅r̂∣n0⟩, (123c)

where r̂ is the position operator in three dimensions, and ωK and
GK are suitable sets of weights and reciprocal lattice vectors, respec-
tively.166 The functional in Eq. (123a) can be used for both gas-phase
and periodic systems. In the former case, the functional is equivalent
to the Boys–Foster localization.237 In the latter case, its applicabil-
ity is limited to the electronic states described within the Γ-point
approximation.

CP2K also implements the Pipek–Mezey localization func-
tional,238 which can be written in the same form as the Berghold
functional above with K referring to atoms, zK

i measuring the con-
tribution of orbital i to the Mulliken charge of atom K, and B being
defined as

BK
mn =

1
2 ∑μ∈K
⟨m0∣(∣χμ⟩⟨χμ∣ + ∣χμ⟩⟨χμ∣)∣n0⟩, (124)

where |χμ⟩ and |χμ⟩ are atom-centered covariant and contravariant
basis set functions.166 The Pipek–Mezey functional has the advan-
tage of preserving the separation of σ and π bonds and is commonly
employed for molecular systems.

In addition to the traditional localization techniques, CP2K
offers localization methods that produce non-orthogonal LMOs
(NLMOs).239 In these methods, matrix A is not restricted to be
unitary and the minimized objective function contains two terms:
a localization functional ΩL given by Eq. (123a) and a term
that penalizes unphysical states with linearly dependent localized
orbitals

Ω(A) = ΩL(A) − cP log det[σ−1
diag(A)σ(A)], (125)

where cP > 0 is the penalty strength and σ is the NLMO overlap
matrix,

σkl = ⟨k∣l⟩ =∑
ji

Ajk⟨j0∣i0⟩Ail. (126)

The penalty term varies from 0 for orthogonal LMOs to +∞ for
linearly dependent NLMOs, making the latter inaccessible in the
localization procedure with finite penalty strength cP. The inclu-
sion of the penalty term converts the localization procedure into a
straightforward unconstrained optimization problem and produces
NLMOs that are noticeably more localized than their conventional
orthogonal counterparts (Fig. 8).

B. Linear scaling methods based on localized
one-electron orbitals

Linear-scaling, or so-called O(N), methods described in
Sec. VIII E exploit the natural locality of the one-electron density
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FIG. 8. Orthogonal (bottom) and non-orthogonal (top) LMOs on the covalent bond
of the adjacent carbon atoms in a carborane molecule C2B10H12 (isosurface value
is 0.04 a.u.).

matrix. Unfortunately, the variational optimization of the density
matrix is inefficient if calculations require many basis functions per
atom. From the computational point of view, the variation of local-
ized one-electron states is preferable to the density matrix optimiza-
tion because the former requires only the occupied states, reducing
the number of variational degrees of freedom significantly, espe-
cially in calculations with large basis sets. CP2K contains a variety
of orbital-based O(N) DFT methods briefly reviewed here and in
Sec. X C.

Unlike density matrices, one-electron states tend to delocal-
ize in the process of unconstrained optimization and their locality
must be explicitly enforced to achieve linear-scaling. To this end,
each occupied orbital is assigned a localization center—an atom
(or a molecule)—and a localization radius Rc. Then, each orbital is
expanded strictly in terms of subsets of localized basis functions cen-
tered on the atoms (or molecules) lying within Rc from the orbital’s
center. In CP2K, contracted Gaussian functions are used as the
localized basis set.

Since their introduction,240–242 the orbitals with this strict
a priori localization have become known under different names
including absolutely localized molecular orbitals,243 localized wave-
functions,244 non-orthogonal generalized Wannier functions,245

multi-site support functions,246 and non-orthogonal localized
molecular orbitals.247 Here, they are referred to as compact local-
ized molecular orbitals (CLMOs) to emphasize that their expan-
sion coefficients are set to zero for all basis functions centered out-
side orbitals’ localization subsets. Unlike previous works,248–250 the

ALMO acronym is avoided,243 since it commonly refers to a special
case of compact orbitals with Rc = 0.180,251–256

While the localization constraints are necessary to design
orbital-based O(N) methods, the reduced number of electronic
degrees of freedom results in the variationally optimal CLMO energy
being always higher than the reference energy of fully delocalized
orbitals. From the physical point of view, enforcing orbital locality
prohibits the flow of electron density between distant centers and
thus switches off the stabilizing donor–acceptor (i.e., covalent) com-
ponent of interactions between them. It is important to note that
the other interactions such as long-range electrostatics, exchange,
polarization, and dispersion are retained in the CLMO approx-
imation. Thereby, the accuracy of the CLMO-based calculations
depends critically on the chosen localization radii, which should be
tuned for each system to obtain the best accuracy-performance com-
promise. In systems with non-vanishing bandgaps, the neglected
donor–acceptor interactions are typically short-ranged and CLMOs
can accurately represent their electronic structure if Rc encompasses
the nearest and perhaps next nearest neighbors. On the other hand,
the CLMO approach is not expected to be practical for metals and
semi-metals because of their intrinsically delocalized electrons.

The methods and algorithms in CP2K are designed to cir-
cumvent the known problem of slow variational optimization of
CLMOs,244,257–261 the severity of which rendered early orbital-based
O(N) methods impractical. Two solutions to the convergence prob-
lem are described here. The first approach is designed for systems
without strong covalent interactions between localization centers
such as ionic materials or ensembles of small weakly interacting
molecules.248,249,260,262 The second approach is proposed to deal with
more challenging cases of strongly bonded atoms such as covalent
crystals.

The key idea of the first approach is to optimize CLMOs in a
two-stage SCF procedure. In the first stage, Rc is set to zero and the
CLMOs—they can be called ALMOs in this case—are optimized on
their centers. In the second stage, the CLMOs are relaxed to allow
delocalization onto the neighbor molecules within their localization
radius Rc. To achieve a robust optimization in the problematic sec-
ond stage, the delocalization component of the trial CLMOs must
be kept orthogonal to the fixed ALMOs obtained in the first stage.
If the delocalization is particularly weak, the CLMOs in the second
stage can be obtained using the simplified Harris functional263—
orbital optimization without updating the Hamiltonian matrix—or
non-iterative perturbation theory. The mathematical details of the
two-stage approach can be found in Ref. 249. A detailed descrip-
tion of the algorithms is presented in the supplementary material of
Ref. 250.

The two-stage SCF approach resolves the convergence prob-
lem only if the auxiliary ALMOs resemble the final variation-
ally optimal CLMOs and, therefore, is not practical for systems
with noticeable electron delocalization—in other words, covalent
bonds—between atoms. The second approach, designed for systems
of covalently bonded atoms, utilizes an approximate electronic Hes-
sian that is inexpensive to compute and yet sufficiently accurate to
identify and remove the problematic optimization modes.264 The
accuracy and practical utility of this approach rely on the fact that
the removed low-curvature modes are associated with the nearly
invariant occupied–occupied orbital mixing, which produce only an
insignificant lowering in the total energy.

J. Chem. Phys. 152, 194103 (2020); doi: 10.1063/5.0007045 152, 194103-23

© Author(s) 2020

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

The robust variational optimization of CLMOs combined with
CP2K’s fast O(N) algorithms for the construction of the KS Hamil-
tonian enabled the implementation of a series of O(N) orbital-
based DFT methods with a low computational overhead. Figure 9
shows that Rc can be tuned to achieve substantial computational
savings without compromising the accuracy of the calculations.
It also demonstrates that CLMO-based DFT exhibits early-offset

FIG. 9. Accuracy and efficiency of O(N) DFT for liquid water based on the two-
stage CLMO optimization. Calculations were performed using the BLYP functional
and a TZV2P basis set for 100 snapshots representing liquid water at constant
temperature (300 K) and density (0.9966 g/cm3). (a) Dependence of the average
number of neighbors on the localization radius, expressed in units of the elements’
van der Waals radii (vdWR). (b) Energy error per molecule relative to the ener-
gies of fully delocalized orbitals. For simulations, in which the coordination number
of molecules does not change drastically, the mean error represents a constant
shift of the potential energy surface and does not affect the quality of simulations.
In such cases, the standard deviation (error bars) is better suited to measure the
accuracy of the CLMO methods. (c) Wall-time required for the variational mini-
mization of the energy on 256 compute cores. The localization radius is set to 1.6
vdWR for the CLMOs methods. The CLMO methods are compared to the cubically
scaling optimization of delocalized orbitals (OT SCF),199,212 as well as to the O(N)
optimization of density matrix.115 Perfect linear- and cubic-scaling lines are shown
in gray and cyan, respectively. See Ref. 249 for details.

linear-scaling behavior even for challenging condensed-phase sys-
tems and works extremely well with large basis sets.

The current implementation of the CLMO-based methods is
limited to localization centers with closed-shell electronic configu-
rations. The nuclear gradients are available only for the methods
that converge the CLMO variational optimization. This excludes
CLMO methods based on the Harris functional and perturbation
theory.

Section X C describes how the CLMO methods can be used
in AIMD simulations by means of the second-generation Car–
Parrinello MD (CPMD) method of Kühne and co-workers.3,265,266

Energy decomposition analysis (EDA) methods that exploit the
locality of compact orbitals to understand the nature of intermolec-
ular interactions in terms of physically meaningful components are
described in Sec. XI A.

C. Polarized atomic orbitals from machine learning
The computational cost of a DFT calculation depends criti-

cally on the size and condition number of the employed basis set.
Traditional basis sets are atom centered, static, and isotropic. Since
molecular systems are never isotropic, it is apparent that isotropic
basis sets are sub-optimal. The polarized atomic orbitals from the
machine learning (PAO-ML) scheme provide small adaptive basis
sets, which adjust themselves to the local chemical environment.267

The scheme uses polarized atomic orbitals (PAOs), which are con-
structed from a larger primary basis function as introduced by
Berghold et al.268 A PAO basis function φ̃μ can be written as a
weighted sum of primary basis functions φν, where μ and ν belong
to the same atom,

φ̃μ =∑
ν

Bμν φν. (127)

The aim of the PAO-ML method is to predict the transformation
matrix B for a given chemical environment using machine learning
(ML). The analytic nature of ML models allows for the calculation of
exact analytic forces as they are required for AIMD simulations. In
order to train such an ML model, a set of relevant atomic motifs with
their corresponding optimal PAO basis are needed. This poses an
intricate non-linear optimization problem as the total energy must
be minimal with respect to the transformation matrix B, and the
electronic density, while still obeying the Pauli principle. To this end,
the PAO-ML scheme introduced an improved optimization algo-
rithm based on the Li, Nunes, and Vanderbilt formulation for the
generation of training data.269

When constructing the ML model, great care must be taken to
ensure the invariance of the predicted PAO basis sets with respect
to rotations of the simulation cell to prevent artificial torque forces.
The PAO-ML scheme achieves rotational invariance by employ-
ing potentials anchored on neighboring atoms. The strength of
individual potential terms is predicted by the ML model. Collec-
tively, the potential terms form an auxiliary atomic Hamiltonian,
whose eigenvectors are then used to construct the transformation
matrix B.

The PAO-ML method has been demonstrated by means of
AIMD simulations of liquid water. A minimal basis set yielded
structural properties in fair agreement with basis set converged
results. In the best case, the computational cost was reduced by a
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factor of 200 and the required flops were reduced by 4 orders of
magnitude. Already, a very small training set gave satisfactory results
as the variational nature of the method provides robustness.

X. AB INITIO MOLECULAR DYNAMICS
The mathematical task of AIMD is to evaluate the expecta-

tion value ⟨O⟩ of an arbitrary operator O(R,P) with respect to the
Boltzmann distribution

⟨O⟩ = ∫
dRdPO(R,P) e−βE(R,P)

∫ dRdP e−βE(R,P) , (128)

where R and P are the nuclear positions and momenta, while
β = 1/kBT is the inverse temperature. The total energy function

E(R,P) =
N

∑
I=1

P2
I

2MI
+ E[{ψi};R], (129)

where the first term denotes the nuclear kinetic energy, E[{ψi};R]
denotes the potential energy function, N denotes the number of
nuclei, and MI denotes the corresponding masses.

However, assuming the ergodicity hypothesis, the thermal aver-
age ⟨O⟩ can not only be determined as the ensemble average but also
as a temporal average,

⟨O⟩ = lim
T→∞

1
T ∫

dt O(R(t),P(t)), (130)

by means of AIMD.
In the following, we will assume that the potential energy

function is calculated on the fly using KS-DFT so that E[{ψi};R]
= EKS

[{ψi[ρ(r)]};R] + EII(R). In CP2K, AIMD comes in two
distinct flavors, which are both outlined in this section.

A. Born–Oppenheimer molecular dynamics
In Born–Oppenheimer MD (BOMD), the potential energy

E[{ψi};R] is minimized at every AIMD step with respect to {ψi(r)}
under the holonomic orthonormality constraint ⟨ψi(r)|ψj(r)⟩ = δij.
This leads to the following Lagrangian:

LBO({ψi};R, Ṙ) =
1
2

N

∑
I=1

MIṘ
2
I −min

{ψi}
E[{ψi};R]

+∑
i,j
Λij(⟨ψi∣ψj⟩ − δij), (131)

where Λ is a Hermitian Lagrangian multiplier matrix. By solving the
corresponding Euler–Lagrange equations

d
dt

∂L
∂ṘI
=

∂L
∂RI

, (132a)

d
dt

∂L
∂⟨ψ̇i∣

=
∂L
∂⟨ψi∣

, (132b)

one obtains the associated equations of motion

MIR̈I = −∇RI

⎡
⎢
⎢
⎢
⎢
⎣

min
{ψi}

E[{ψi};R] ∣
{⟨ψi ∣ψj⟩=δij}

⎤
⎥
⎥
⎥
⎥
⎦

= −
∂E
∂RI

+∑
i,j
Λij

∂

∂RI
⟨ψi∣ψj⟩

− 2∑
i

∂⟨ψi∣

∂RI

⎡
⎢
⎢
⎢
⎢
⎣

δE
δ⟨ψi∣

−∑
j
Λij∣ψj⟩

⎤
⎥
⎥
⎥
⎥
⎦

, (133a)

0 ≲ −
δE
δ⟨ψi∣

+∑
j
Λij∣ψj⟩

= −Ĥe⟨ψi∣ +∑
j
Λij∣ψj⟩. (133b)

The first term on the right-hand side (RHS) of Eq. (133a) is the
so-called Hellmann–Feynman force.270,271 The second term that is
denoted as Pulay,18 or wavefunction force FWF, is a constraint force
due to the holonomic orthonormality constraint and is nonvanish-
ing if, and only if, the basis functions ϕj explicitly depend on R. The
final term stems from the fact that, independently of the particular
basis set used, there is always an implicit dependence on the atomic
positions. The factor 2 in Eq. (133a) stems from the assumption that
the KS orbitals are real, an inessential simplification. Nevertheless,
the whole term vanishes whenever ψi(R) is an eigenfunction of the
Hamiltonian within the subspace spanned by the not necessarily
complete basis set.272,273 Note that this is a much weaker condi-
tion than the original Hellmann–Feynman theorem, of which we
hence have not availed ourselves throughout the derivation, except
as an eponym for the first RHS term of Eq. (133a). However, as the
KS functional is nonlinear, eigenfunctions of its Hamiltonian Ĥe
are only obtained at exact self-consistency, which is why the last
term of Eq. (133a) is also referred to as non-self-consistent force
FNSC.274 Unfortunately, this cannot be assumed in any numerical
calculation and results in immanent inconsistent forces as well as
the inequality of Eq. (133b). Neglecting either FWF or FNSC, i.e.,
applying the Hellmann–Feynman theorem to a non-eigenfunction,
leads merely to a perturbative estimate of the generalized
forces

F = FHF + FWF + FNSC, (134)

which, contrary to the energies, depends just linearly on the error in
the electronic charge density. That is why it is much more exacting
to calculate accurate forces rather than total energies.

B. Second-generation Car–Parrinello molecular
dynamics

Until recently, AIMD has mostly relied on two general meth-
ods: The original CPMD and the direct BOMD approach, each with
its advantages and shortcomings. In BOMD, the total energy of a
system, as determined by an arbitrary electronic structure method,
is fully minimized in each MD time step, which renders this scheme
computationally very demanding.275 By contrast, the original CPMD
technique obviates the rather time-consuming iterative energy min-
imization by considering the electronic degrees of freedom as clas-
sical time-dependent fields with a fictitious mass μ that are prop-
agated by the use of Newtonian dynamics.276 In order to keep the
electronic and nuclear subsystems adiabatically separated, which
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causes the electrons to follow the nuclei very close to their instan-
taneous electronic ground state, μ has to be chosen sufficiently
small.277 However, in CPMD, the maximum permissible integra-
tion time step scales like ∼ √μ and therefore has to be significantly
smaller than that of BOMD, hence limiting the attainable simulation
timescales.278

The so-called second-generation CPMD method combines the
best of both approaches by retaining the large integration time
steps of BOMD while, at the same time, preserving the efficiency of
CPMD.3,265,266 In this Car–Parrinello-like approach to BOMD, the
original fictitious Newtonian dynamics of CPMD for the electronic
degrees of freedom is substituted by an improved coupled electron–
ion dynamics that keeps the electrons very close to the instantaneous
ground-state without the necessity of an additional fictitious mass
parameter. The superior efficiency of this method originates from
the fact that only one preconditioned gradient computation is nec-
essary per AIMD step. In fact, a gain in efficiency between one and
two orders of magnitude has been observed for a large variety of
different systems ranging from molecules and solids,279–287 includ-
ing phase-change materials,288–294 over aqueous systems,295–304 to
complex interfaces.305–311

Within mean-field electronic structure methods, such as
Hartree–Fock and KS-DFT, E[{ψi};R] is either a functional of the
electronic wavefunction that is described by a set of occupied MOs
|ψi⟩ or, equivalently, of the corresponding one-particle density oper-
ator ρ =∑i|ψi⟩⟨ψi|. The improved coupled electron–ion dynamics of
second-generation CPMD obeys the following equations of motion
for the nuclear and electronic degrees of freedom:

MIR̈I = −∇RI

⎡
⎢
⎢
⎢
⎢
⎣

min
{ψi}

E[{ψi};RI]∣
{⟨ψi ∣ψj⟩=δij}

⎤
⎥
⎥
⎥
⎥
⎦

= −
∂E
∂RI

+∑
i,j
Λij

∂

∂RI
⟨ψi∣ψj⟩

− 2∑
i

∂⟨ψi∣

∂RI

⎡
⎢
⎢
⎢
⎢
⎣

∂E[{ψi};RI]

∂⟨ψi∣
−∑

j
Λij∣ψj⟩

⎤
⎥
⎥
⎥
⎥
⎦

, (135a)

d2

dτ2 ∣ψi(r, τ)⟩ = −
∂E[{ψi};RI]

∂⟨ψi(r, τ)∣
− γω

d
dτ
∣ψi(r, τ)⟩

+ ∑
j
Λij∣ψj(r, τ)⟩. (135b)

The former is the conventional nuclear equation of motion of
BOMD consisting of Hellmann–Feynman, Pulay, and non-self-
consistent force contributions,18,270,271,274 whereas the latter consti-
tutes a universal oscillator equation as obtained by nondimension-
alization. The first term on the RHS of Eq. (135b) can be sought
of as an “electronic force” to propagate |ψi⟩ in dimensionless time
τ. The second term is an additional damping term to relax more
quickly to the instantaneous electronic ground-state, where γ is an
appropriate damping coefficient and ω is the undamped angular fre-
quency of the universal oscillator. The final term derives from the
constraint to fulfill the holonomic orthonormality condition ⟨ψi|ψj⟩

= δij, by using the Hermitian Lagrangian multiplier matrix Λ. As
shown in Eq. (135b), not even a single diagonalization step but just
one “electronic force” calculation is required. In other words, the
second-generation CPMD method not only entirely bypasses the

necessity of a SCF cycle but also the alternative iterative wavefunc-
tion optimization.

However, contrary to the evolution of the nuclei, for the short-
term integration of the electronic degrees of freedom, accuracy is
crucial, which is why a highly accurate yet efficient propagation
scheme is essential. As a consequence, the evolution of the MOs is
conducted by extending the always-stable predictor–corrector inte-
grator of Kolafa to the electronic structure problem.312 However,
since this scheme was originally devised to deal with classical polar-
ization, special attention must be paid to the fact that the holonomic
orthonormality constraint, which is due to the fermionic nature of
electrons that forces the wavefunction to be antisymmetric in order
to comply with the Pauli exclusion principle, is always satisfied dur-
ing the dynamics. For that purpose, first the predicted MOs at time
tn are computed based on the electronic degrees of freedom from the
K previous AIMD steps,

∣ψp
i (tn)⟩ =

K

∑
m
(−1)m+1m

(
2K

K−m)

(
2K−2
K−1 )

ρ(tn−m)∣ψi(tn−1)⟩. (136)

This is to say that the predicted one-electron density operator ρp(tn)
is used as a projector onto the occupied subspace |ψi(tn−1)⟩ of the
previous AIMD step. In this way, we take advantage of the fact that
ρp(tn) evolves much more smoothly than ∣ψp

i (tn)⟩ and is therefore
easier to predict. This is particularly true for metallic systems, where
many states crowd the Fermi level. Yet, to minimize the error and
to further reduce the deviation from the instantaneous electronic
ground-state, ∣ψp

i (tn)⟩ is corrected by performing a single mini-
mization step ∣δψp

i (tn)⟩ along the preconditioned electronic gradient
direction, as computed by the orthonormality conserving orbital
OT method described in Sec. VIII C.199 Therefore, the modified
corrector can be written as

∣ψi(tn)⟩ = ∣ψp
i (tn)⟩ + ω(∣δψp

i (tn)⟩ − ∣ψp
i (tn)⟩)

with

ω =
K

2K − 1
for K ≥ 2. (137)

The eventual predictor–corrector scheme leads to an electron
dynamics that is rather accurate and time-reversible up to
O(Δt2K−2

), where Δt is the discretized integration time step, while ω
is chosen so as to guarantee a stable relaxation toward the minimum.
In other words, the efficiency of the present second-generation
CPMD method stems from the fact that the instantaneous electronic
ground state is very closely approached within just one electronic
gradient calculation. We thus totally avoid the SCF cycle and any
expensive diagonalization steps while remaining very close to the BO
surface and, at the same time, Δt can be chosen to be as large as in
BOMD.

However, despite the close proximity of the propagated
MOs to the instantaneous electronic ground state, the nuclear
dynamics is slightly dissipative, most likely because the employed
predictor–corrector scheme is not symplectic. The validity of this
assumption has been independently verified by various numerical
studies of others.2,313–315 Nevertheless, presuming that the energy is
exponentially decaying, which had been shown to be an excellent
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assumption,3,265,266 it is possible to rigorously correct for the dissi-
pation by modeling the nuclear forces of second-generation CPMD
FCP

I = −∇RI E[{ψi};RI] by

FCP
I = F

BO
I − γDMIṘI , (138)

where FBO
I are the exact but inherently unknown BO forces and γD

is an intrinsic yet to be determined friction coefficient to mimic
the dissipation. The presence of damping immediately suggests a
canonical sampling of the Boltzmann distribution by means of the
following modified Langevin-type equation:

MIR̈I = FBO
I − γDMIṘI
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

+ΞD
I (139a)

= FCP
I + ΞD

I , (139b)

where ΞD
I is an additive white noise term, which must obey the

fluctuation–dissipation theorem ⟨ΞD
I (0)ΞD

I (t)⟩ = 2γDMIkBTδ(t) in
order to guarantee an accurate sampling of the Boltzmann distribu-
tion.

This is to say that if one knew the unknown value of γD, it
would nevertheless be possible to ensure an exact canonical sam-
pling of the Boltzmann distribution despite the dissipation. For-
tunately, the inherent value of γD does not need to be known
a priori but can be bootstrapped so as to generate the correct average
temperature,3,265,266 as measured by the equipartition theorem

⟨
1
2

MIṘ
2
I ⟩ =

3
2

kBT. (140)

More precisely, in order to determine the hitherto unknown value
of γD, we perform a preliminary simulation in which we vary γD on
the fly using a Berendsen-like algorithm until Eq. (140) is eventu-
ally satisfied.295 Alternatively, γD can also be continuously adjusted
automatically using the adaptive Langevin technique of Leimkuhler
and co-workers.316–318 In this method, the friction coefficient γD of
Eq. (139) is reinterpreted as a dynamical variable, defined by a nega-
tive feedback loop control law as in the Nosé–Hoover scheme.319,320

The corresponding dynamical equation for γD reads as

γ̇D = (2K − nkBT)/Q, (141)

where K is the kinetic energy, n is the number of degrees of free-
dom, and Q = kBTτ2

NH is the Nose–Hoover fictitious mass with time
constant τNH.

C. Low-cost linear-scaling ab initio molecular
dynamics based on compact localized molecular
orbitals

The computational complexity of CLMO DFT described in
Sec. IX B grows linearly with the number of molecules, while its over-
head cost remains very low because of the small number of electronic
descriptors and efficient optimization algorithms (see Fig. 9). These
features make CLMO DFT a promising method for accurate AIMD
simulations of large molecular systems.

The difficulty in adopting CLMO DFT for dynamical simula-
tions arises from the nonvariational character of compact orbitals.
While CLMOs can be reliably optimized using the two-stage SCF
procedure described in Sec. IX B, the occupied subspace defined
in the first stage must remain fixed during the second stage to

achieve convergence. In addition, electron delocalization effects can
suddenly become inactive in the course of a dynamical simulation
when a neighboring molecule crosses the localization threshold Rc.
Furthermore, the variational optimization of orbitals is in practice
inherently not perfect and terminated once the norm of the elec-
tronic gradient drops below a small but nevertheless finite con-
vergence threshold ϵSCF. These errors accumulate in long AIMD
trajectories, leading to non-physical sampling and/or numerical
problems.

Traditional strategies to cope with these problems are com-
putationally expensive and include increasing Rc, decreasing ϵSCF,
and computing the nonvariational contribution to the forces via
a coupled-perturbed procedure.321,322 CP2K implements another
approach that uses the CLMO state obtained after the two-stage
CLMO SCF procedure to compute only the inexpensive Hellmann–
Feynman and Pulay components and neglects the computation-
ally intense nonvariational component of the nuclear forces. To
compensate for the missing component, CP2K uses a modified
Langevin equation of motion that is fine-tuned to retain stable
dynamics even with imperfect forces. This approach is known as
the second-generation CPMD methodology of Kühne and work-
ers,3,265,266 which is discussed in detail in Sec. X B. Its combination
with CLMO DFT is described in Ref. 250.

An application of CLMO AIMD to liquid water demonstrates
that the compensating terms in the modified Langevin equation
can be tuned to maintain a stable dynamics and reproduce accu-
rately multiple structural and dynamical properties of water with
tight orbital localization (Rc = 1.6 vdWR) and ϵSCF as high as 10−2

a.u.250 The corresponding results are shown in Fig. 10. The low
computational overhead of CLMO AIMD, afforded by these set-
tings, makes it ideal for routine medium-scale AIMD simulations,
while its linear-scaling complexity allows us to extend first-principle
studies of molecular systems to previously inaccessible length
scales.

It is important to note that AIMD in CP2K cannot be combined
with the CLMO methods based on the Harris functional and pertur-
bative theory (see Sec. IX B). A generalization of the CLMO AIMD
methodology to systems of strongly interacting atoms (e.g., covalent
crystals) is underway.

D. Multiple-time-step integrator
The AIMD-based MTS integrator presented here is based on

the reversible reference system propagator algorithm (r-RESPA),
which was developed for classical MD simulations.323 Using a
carefully constructed integration scheme, the time evolution is
reversible, and the MD simulation remains accurate and energy
conserving. In AIMD-MTS, the difference in computational cost
between a hybrid and a local XC functional is exploited, by perform-
ing a hybrid calculation only after several conventional DFT inte-
gration time steps. r-RESPA is derived from the Liouville operator
representation of Hamilton mechanics,

iL =
f

∑
j=1
[
∂H
∂pj

∂

∂xj
+
∂H
∂xj

∂

∂pj
], (142)

where L is the Liouville operator for the system containing f degrees
of freedom. The corresponding positions and momenta are denoted
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FIG. 10. Accuracy and efficiency of O(N) AIMD based on the two-stage CLMO
SCF for liquid water. All simulations were performed using the PBE XC func-
tional and a TZV2P basis set at constant temperature (300 K) and density
(0.9966 g/cm3). For the CLMO methods, Rc = 1.6 vdWR. (a) Radial distribu-
tion function, (b) kinetic energy distribution (the gray curve shows the theoretical
Maxwell–Boltzmann distribution), and (c) IR spectrum were calculated using the
fully converged OT method for delocalized orbitals (black line) and CLMO AIMD
with ϵSCF = 10−2 a.u. (d) Timing benchmarks for liquid water on 256 compute
cores. Cyan lines represent perfect cubic-scaling, whereas gray lines represent
perfect linear-scaling. (e) Weak scalability benchmarks are performed with ϵSCF
= 10−2 a.u. Gray dashed lines connect systems simulated on the same number of
cores to confirm O(N) behavior. See Ref. 250 for details.

as xj and pj, respectively. This operator is then used to create the
classical propagator U(t) for the system, which reads as

U(t) = eiLt . (143)

Decomposing the Liouville operator into two parts,

iL = iL1 + iL2, (144)

and applying a second-order Trotter-decomposition to the corre-
sponding propagator yields

ei(L1+L2)Δt
= [ei(L1+L2)Δt/n

]
n

= [eiL1(δt/2)eiL2δteiL1(δt/2)
]

n
+ O(δt3

), (145)

with δt = Δt/n. For this propagator, several integrator schemes can
be derived.324 The extension for AIMD-MTS is obtained from a
decomposition of the force in the Liouville operator into two or
more separate forces, i.e.,

iL =
f

∑
j=1
[ẋj

∂

∂xj
+ F1

j
∂

∂pj
+ F2

j
∂

∂pj
]. (146)

For that specific case, the propagator can be written as

eiLΔt
= e(Δt/2)F2 ∂

∂p [e(δt/2)F1 ∂
∂p e

δtẋj
∂
∂xj e(δt/2)F1 ∂

∂p ]
n
e(Δt/2)F2 ∂

∂p .

(147)

This allows us to treat F1 and F2 with different time steps, while
the whole propagator still remains time-reversible. The procedure
for F1 and F2 will be referred to as the inner and the outer loop,
respectively. In the AIMD-MTS approach, the forces are split in the
following way:

F1
= Fapprox, (148a)

F2
= Faccur

− Fapprox, (148b)

where Faccur are the forces computed by the more accurate method,
e.g., hybrid DFT, whereas Fapprox are forces as obtained from a less
accurate method, e.g., by GGA XC functionals. Obviously, the cor-
responding Liouville operator equals the purely accurate one. The
advantage of this splitting is that the magnitude of F2 is usually
much smaller than that of F1. To appreciate that, it has to be con-
sidered how closely geometries and frequencies obtained by hybrid
DFT normally match the ones obtained by a local XC functional,
in particular, for stiff degrees of freedom. The difference of the cor-
responding Hessians is therefore small and low-frequent. However,
high-frequency parts are not removed analytically; thus, the theo-
retical upper limit for the time step of the outer loop remains half
the period of the fastest vibration.325 The gain originates from an
increased accuracy and stability for larger time steps in the outer
loop integration. Even using an outer loop time step close to the the-
oretical limit, a stable and accurate AIMD is obtained. Additionally,
there is no shift to higher frequencies as the (outer loop) time step is
increased, contrary to the single time step case.

XI. ENERGY DECOMPOSITION AND SPECTROSCOPIC
ANALYSIS METHODS

Within CP2K, the nature of intermolecular bonding and vibra-
tional spectra can be rationalized by EDA, normal mode analysis
(NMA), and mode selective vibrational analysis (MSVA) methods,
respectively.
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A. Energy decomposition analysis based on compact
localized molecular orbitals

Intermolecular bonding is a result of the interplay of elec-
trostatic interactions between permanent charges and multipole
moments on molecules, polarization effects, Pauli repulsion, donor–
acceptor orbital interactions (also known as covalent, charge-
transfer, or delocalization interactions), and weak dispersive forces.
The goal of EDA is to measure the contribution of these compo-
nents within the total binding energy, thus gaining deeper insight
into physical origins of intermolecular bonds.

To that extent, CP2K contains an EDA method based on
ALMOs—molecular orbitals localized entirely on single molecules
or ions within a larger system.248,252 The ALMO EDA separates
the total interaction energy (ΔETOT) into frozen density (FRZ),
polarization (POL), and charge-transfer (CT) terms, i.e.,

ΔETOT = ΔEFRZ + ΔEPOL + ΔECT, (149)

which is conceptually similar to the Kitaura–Morokuma EDA326—
one of the first EDA methods. The frozen interaction term is defined
as the energy required to bring isolated molecules into the sys-
tem without any relaxation of their MOs, apart from modifications
associated with satisfying the Pauli exclusion principle,

ΔEFRZ ≡ E(RFRZ) −∑
x

E(Rx), (150)

where E(Rx) is the energy of isolated molecule x and Rx is the
corresponding density matrix, whereas RFRZ is the density matrix
of the system constructed from the unrelaxed MOs of the isolated
molecules. The ALMO EDA is also closely related to the block-
localized wavefunction EDA327 because both approaches use the
same variational definition of the polarization term as the energy
lowering due to the relaxation of each molecule’s ALMOs in the field
of all other molecules in the system,

ΔEPOL ≡ E(RALMO) − E(RFRZ). (151)

The strict locality of ALMOs is utilized to ensure that the relax-
ation is constrained to include only intramolecular variations. This
approach, whose mathematical and algorithmic details have been
described by many authors,243,248,251,328,329 gives an upper limit to
the true polarization energy.330 The remaining portion of the total
interaction energy, the CT term, is calculated as the difference in the
energy of the relaxed ALMO state and the state of fully delocalized
optimized orbitals (RSCF),

ΔECT ≡ E(RSCF) − E(RALMO). (152)

A distinctive feature of the ALMO EDA is that the charge-transfer
contribution can be separated into contributions associated with for-
ward and back-donation for each pair of molecules, as well as a
many-body higher-order (induction) contribution (HO), which is
very small for typical intermolecular interactions. Both the amount
of the electron density transferred between a pair of molecules and
the corresponding energy lowering can be computed,

ΔQCT = ∑
x,y>x
{ΔQx→y + ΔQy→x} + ΔQHO, (153a)

ΔECT = ∑
x,y>x
{ΔEx→y + ΔEy→x} + ΔEHO. (153b)

The ALMO EDA implementation in CP2K is currently
restricted to closed-shell fragments. The efficient O(N) optimiza-
tion of ALMOs serves as its underlying computational engine.249

The ALMO EDA in CP2K can be applied to both gas-phase and
condensed matter systems. It has been recently extended to fraction-
ally occupied ALMOs,331 thus enabling the investigation of inter-
actions between metal surfaces and molecular adsorbates. Another
unique feature of the implementation in CP2K is the ability to con-
trol the spatial range of charge-transfer between molecules using
the cutoff radius Rc of CLMOs (see Sec. IX B). Additionally, the
ALMO EDA in combination with CP2K’s efficient AIMD engine
allows us to switch off the CT term in AIMD simulations, thus mea-
suring the CT contribution to dynamical properties of molecular
systems.332

The ALMO EDA has been applied to study intermolecular
interactions in a variety of gas- and condensed-phase molecu-
lar systems.331,333 The CP2K implementation of ALMO EDA has
been particularly advantageous to understand the nature of hydro-
gen bonding in bulk liquid water,180,248,254,297,300,301,303,332 ice,334

and water phases confined to low dimensions.335 Multiple studies
have pointed out a deep connection between the donor–acceptor
interactions and features of the x-ray absorption,254,336 infrared
(IR)297,298,300,303,332,337,338 (Fig. 11), and nuclear magnetic resonance

FIG. 11. Comparison of the calculated radial distribution functions and IR spectra
computed for liquid water based on AIMD simulations at the BLYP + D3/TZV2P
level of theory with and without the CT terms. See Ref. 332 for details.
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spectra of liquid water.180 Extension of ALMO EDA to AIMD sim-
ulations has shown that the insignificant covalent component of
HB determines many unique properties of liquid water including its
structure (Fig. 11), dielectric constant, hydrogen bond lifetime, rate
of self-diffusion, and viscosity.250,332

B. Normal mode analysis of infrared spectroscopy
IR vibrational spectra can be obtained with CP2K by carry-

ing out a NMA, within the Born–Oppenheimer approximation. The
expansion of the potential energy in a Taylor series around the
equilibrium geometry gives

Epot({RA}) = E(0)pot +∑
A
(
∂Epot

∂RA
)δRA

+
1
2∑AB
(

∂2Epot

∂RA∂RB
)δRAδRB +⋯. (154)

At the equilibrium geometry, the first derivative is zero by definition;
hence, in the harmonic approximation, only the second derivative
matrix (Hessian) has to be calculated. In our implementation, the
Hessian is obtained with the three-point central difference approxi-
mation, which for a system of M particles corresponds to 6M force
evaluations. The Hessian matrix is diagonalized to determine the
3M Q vectors representing a set of decoupled coordinates, which
are the normal modes. In mass weighted coordinates, the angular
frequencies of the corresponding vibrations are then obtained by the
eigenvalues of the second derivative matrix.

C. Mode selective vibrational analysis
For applications in which only few vibrations are of interest, the

MSVA presents a possibility to reduce the computational cost signif-
icantly.339,340 Instead of computing the full second derivative matrix,
only a subspace is evaluated iteratively using the Davidson algo-
rithm. As in NMA, the starting point of this method is the eigenvalue
equation

H(m)Qk = λkQk, (155)

where H(m) is the mass weighted Hessian in Cartesian coordi-
nates. Instead of numerically computing the Hessian elementwise,
the action of the Hessian on a predefined or arbitrary collective
displacement vector

d =∑
i

diem
i (156)

is chosen, where e(m)i are the 3M nuclear basis vectors. The action of
the Hessian on d is given in the first approximation as

σk = (H
(m)d)k =∑

l

∂2Epot

∂R(m)l ∂R(m)k

dl =
∂2Epot

∂R(m)k ∂d
. (157)

The first derivatives with respect to the nuclear positions are sim-
ply the force which can be computed analytically. The derivative
of the force along components i with respect to d can then be
evaluated as a numerical derivative using the three-point central
difference approximation to yield the vector σ. The subspace

approximation to the Hessian at the ith iteration of the procedure
is a i × i matrix,

H(m),iapprox = D
TH(m)D = DTΣ, (158)

where B and Σ are the collection of the d and Σ vectors up to the
actual iteration step. Solving the eigenvalue problem for the small
Davidson matrix

H(m),iapproxu
i
= λ̃i,ui, (159)

we obtain approximate eigenvalues λ̃i
k. From the resulting eigenvec-

tors, the residuum vector

ri
m =

i

∑
k=1

ui
mk[σ

k
− λ̃i

md
k
], (160)

where the sum is over all the basis vectors dk, the number of which
increases at each new iteration i. The residuum vector is used as a
displacement vector for the next iteration. The approximation to the
exact eigenvector m at the ith iteration is

Qm ≈
i

∑
k=1

ui
mkd

k. (161)

This method avoids the evaluation of the complete Hessian and
therefore requires fewer force evaluations. Yet, in the limit of 3M
iterations, the exact Hessian is obtained and thus the exact fre-
quencies and normal modes in the limit of the numerical difference
approximation.

As this is an iterative procedure (Davidson subspace algo-
rithm), the initial guess is important for convergence. Moreover,
there is no guarantee that the created subspace will contain the
desired modes in the case of a bad initial guess. In CP2K, the choice
of the target mode can be a single mode, a range of frequencies, or
modes localized on preselected atoms. If little is known about the
modes of interest (e.g., a frequency range and contributing atoms),
an initial guess can be built by a random displacement of atoms. In
case, where a single mode is tracked, one can use normal modes
obtained from lower quality methods. The residuum vector is cal-
culated with respect to the mode with the eigenvalue closest to the
input frequency. The method will only converge to the mode of
interest if the initial guess is suitable. With the implemented algo-
rithm, always the mode closest to the input frequency is improved.
Using an arbitrary initial guess, the mode of interest might not be
present in the subspace at the beginning. It is important to note that
the Davidson algorithm might converge before the desired mode
becomes part of the subspace. Therefore, there is no warranty that
the algorithm would always converge to the desired mode. By giving
a range of frequencies as initial guess, it might happen that either
none or more than one mode is already present in the spectrum. In
the first case, the mode closest to the desired range will be tracked. In
the second case, always the least converged mode will be improved.
If the mode is selected by a list of contributing atoms, at each step,
the approximations to the eigenvectors of the full Hessian are cal-
culated, and the vector with the largest contributions of the selected
atoms is tracked for the next iteration step.

The MSVA scheme can be efficiently parallelized by either dis-
tributing the force calculations or using the block Davidson algo-
rithm. In the latter approach, the parallel environment is split into
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n sub-environments, each consisting of m processors performing the
force calculations. The initial vectors are constructed for all n envi-
ronments such that n orthonormal vectors are generated. After each
iteration step, the new d and σ vectors are combined into a single D
and Σ matrix. These matrices are then used to construct the approx-
imate Hessian, and from this, the n modes closest to the selected
vectors are again distributed.

The IR intensities are defined as the derivatives of the dipole
vector with respect to the normal mode. Therefore, it is necessary to
activate the computation of the dipoles together with the NMA. By
applying the mode selective approach, large condensed matter sys-
tems can be addressed. An illustrative example is the study by Schiff-
mann et al.,341 where the interaction of the N3, N719, and N712
dyes with anatase(101) has been modeled. The vibrational spectra
for all low-energy conformations have been computed and used to
assist the assignment of the experimental IR spectra, revealing a pro-
tonation dependent binding mode and the role of self-assembly in
reaching high coverage.

XII. EMBEDDING METHODS
CP2K aims to provide a wide range of potential energy meth-

ods, ranging from empirical approaches such as classical force-fields
over DFT-based techniques to quantum chemical methods. In addi-
tion, multiple descriptions can be arbitrarily combined at the input
level so that many combinations of methods are directly available.
Examples are schemes that combine two or more potential energy
surfaces via

E[R] = EMM
[RI+II] − EMM

[RI] + EQM
[RI], (162)

linear combinations of potentials as necessary in alchemical free-
energy calculations,

Eλ[R] = λEI[R] + (1 − λ)EII[R], (163)

or propagation of the lowest potential energy surfaces,

E[R] = min[EI[R], EII[R], . . .]. (164)

However, beside such rather simplistic techniques,342 more sophis-
ticated embedding methods described in the following are also
available within CP2K.

A. QM/MM methods
The QM/molecular-mechanics (MM) multi-grid implementa-

tion in CP2K is based on the use of an additive mixed quantum-
classical mechanics (QM/MM) scheme.343–345 The total energy of the
molecular system can be partitioned into three disjointed terms,

ETOT(Rα,Ra) = EQM
(Rα) + EMM

(Ra) + EQM/MM
(Rα,Ra). (165)

These energy terms parametrically depend on the coordinates of
the nuclei in the quantum region (Rα) and on classical atoms
(Ra). Hence, EQM is the pure quantum energy, computed using
the QUICKSTEP code,5 whereas EMM is the classical energy, described
through the use of the internal classical molecular-mechanics (MM)
driver called FIST. The latter allows the use of the most common

force-fields employed in MM simulations.346,347 The interac-
tion energy term EQM/MM contains all non-bonded contributions
between the QM and the MM subsystems, and in a DFT framework,
we express it as

EQM/MM
(Rα,Ra) = ∑

a∈MM
qa ∫ ρ(r,Rα)va(∣r − Ra∣)dr

+ ∑
a∈MM,α∈QM

vNB(Rα,Ra), (166)

where Ra is the position of the MM atom a with charge qa, ρ(r, Rα)
is the total (electronic plus nuclear) charge density of the quantum
system, and vNB(Rα,Ra) is the non-bonded interaction between clas-
sical atom a and quantum atom α. The electrostatic potential (ESP)
of the MM atoms va(|r − Ra|) is described using for each atomic
charge a Gaussian charge distribution,

ρ(∣r − Ra∣) = (
1

√
πrc,a
)

3

exp(−(∣r − Ra∣/rc,a)
2
), (167)

with width rc ,a, eventually resulting in

va(∣r − Ra∣) =
erf(∣r − Ra∣/rc,a)

∣r − Ra∣
. (168)

This renormalized potential has the desired property of tending to
1/r at large distances and going smoothly to a constant for small r
(see Ref. 348 for renormalization details). Due to the Coulomb long-
range behavior, the computational cost of the integral in Eq. (166)
can be very large. In CP2K, we designed a decomposition of the
electrostatic potential in terms of Gaussian functions with differ-
ent cutoffs combined with a real-space multi-grid framework to
accelerate the calculation of the electrostatic interaction. We named
this method Gaussian Expansion of the Electrostatic Potential or
GEEP.348 The advantage of this methodology is that grids of differ-
ent spacing can be used to represent the different contributions of
va(r, Ra), instead of using only the same grid employed for the map-
ping of the electronic wavefunction. In fact, by writing a function as
a sum of terms with compact support and with different cutoffs, the
mapping of the function can be efficiently achieved using different
grid levels, in principle as many levels as contributing terms, each
optimal to describe the corresponding term.

1. QM/MM for isolated systems
For isolated systems, each MM atom is represented as a contin-

uous Gaussian charge distribution and each GEEP term is mapped
on one of the available grid levels, chosen to be the first grid
whose cutoff is equal to or bigger than the cutoff of that particular
GEEP contribution. However, all atoms contribute to the coarsest
grid level through the long-range Rlow(|r − Ra|) part,348 which is
the smooth GEEP component as defined in Eq. (169). The result
of this collocation procedure is a multi-grid representation of the
QM/MM electrostatic potential VQM/MM

i (r,Ra), where i labels the
grid level, represented by a sum of single atomic contributions
VQM/MM

i (r,Ra) = ∑a∈MM vi
a(r,Ra), on that particular grid level. In

a realistic system, the collocation represents most of the compu-
tational time spent in the evaluation of the QM/MM electrostatic
potential that is around 60%–80%. Afterward, the multi-grid expan-
sion VQM/MM

i (r,Ra) is sequentially interpolated starting from the
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coarsest grid level up to the finest level, using real-space interpolator
and restrictor operators.

Using the real-space multi-grid operators together with the
GEEP expansion, the prefactor in the evaluation of the QM/MM
electrostatic potential has been lowered from N3

f to N3
c , where N f

is the number of grid points on the finest grid and Nc is the number
of grid points on the coarsest grid. The computational cost of the
other operations for evaluating the electrostatic potential, such as
the mapping of the Gaussians and the interpolations, becomes neg-
ligible in the limit of a large MM system, usually more than 600–800
MM atoms.

Using the fact that grids are commensurate (Nf /Nc

= 23(Ngrid−1)), and employing for every calculation four grid levels,
the speed-up factor is around 512 (29). This means that the present
implementation is two orders of magnitude faster than the direct
analytical evaluation of the potential on the grid.

2. QM/MM for periodic systems
The effect of the periodic replicas of the MM subsystem is only

in the long-range term and comes entirely from the residual function
Rlow(r, Ra),

VQM/MM
recip (r,Ra) =

∞

∑
L
∑

a
qav

recip
a

=
∞

∑
L
∑

a
qaRlow(∣r − Ra + L∣), (169)

where L labels the infinite sums over the period replicas. Performing
the same manipulation used in the Ewald summation,349 the previ-
ous equation can be computed more efficiently in reciprocal space,
i.e.,

VQM/MM
recip (ri,Ra) = L−3

kcut

∑
k
∑

a
qaR̃low(k) cos [2πk ⋅ (ri − Ra)]. (170)

The term R̃low(k), representing the Fourier transform of the smooth
electrostatic potential, can be analytically evaluated via

R̃low(k) = [
4π
∣k∣2
] exp(−

∣k∣2r2
c,a

4
)

−∑
Ng

Ag(π)
3
2 G3

g exp
⎛

⎝
−

G2
g ∣k∣2

4
⎞

⎠
. (171)

The potential in Eq. (170) can be mapped on the coarsest avail-
able grid. Once the electrostatic potential of a single MM charge
within periodic boundary conditions is derived, the evaluation of
the electrostatic potential due to the MM subsystem is easily com-
puted employing the same multi-grid operators (interpolation and
restriction) used for isolated systems.

The description of the long-range QM/MM interaction with
periodic boundary conditions requires the description of the
QM/QM periodic interactions, which plays a significant role if the
QM subsystem has a net charge different from zero or a significant
dipole moment. Here, we exploit a technique proposed few years ago
by Blöchl,350 for decoupling the periodic images and restoring the
correct periodicity also for the QM part. A full and comprehensive
description of the methods is reported in Ref. 351.

3. Image charge augmented QM/MM

The IC augmented QM/MM model in CP2K has been devel-
oped for the simulation of molecules adsorbed at metallic inter-
faces.352 In the IC-QM/MM scheme, the adsorbates are described
by KS-DFT and the metallic substrate is treated at the MM level
of theory. The interactions between the QM and MM subsystems
are modeled by empirical potentials of, e.g., the Lennard-Jones-type
to reproduce dispersion and Pauli repulsion. Polarization effects
due to electrostatic screening in metallic conductors are explicitly
accounted for by applying the IC formulation.

The charge distribution of the adsorbed molecules generates
an electrostatic potential Ve(r), which extends into the substrate. If
the electrostatic response of the metal is not taken into account in
our QM/MM setup, the electrostatic potential has different values
at different points r inside the metal slab, as illustrated in Fig. 12.
However, the correct physical behavior is that Ve(r) induces an elec-
trostatic response such that the potential in the metal is zero or
at least constant. Following Ref. 353, we describe the electrostatic
response of the metallic conductor by introducing an image charge
distribution ρr(r), which is modeled by a set of Gaussian charges
{ga} centered at the metal atoms so that

ρm(r) =∑
a

caga(r,Ra), (172)

where Ra are the positions of the metal atoms. The unknown expan-
sion coefficients ca are determined self-consistently imposing the
constant-potential condition, i.e., the potential Vm(r) generated by
ρm(r) screens Ve(r) within the metal so that Ve(r) + Vm(r) = V0,
where V0 is a constant potential that can be different from zero if
an external potential is applied. The modification of the electrostatic
potential upon application of the IC correction is shown in Fig. 12.
Details on the underlying theory and implementation can be found
in Ref. 352.

The IC-QM/MM scheme provides a computationally efficient
way to describe the MM-based electrostatic interactions between the
adsorbate and the metal in a fully self-consistent fashion, allowing
the charge densities of the QM and MM parts to mutually modify
each other. Except for the positions of the metal atoms, no input
parameters are required. The computational overhead compared to
a conventional QM/MM scheme is in the current implementation

FIG. 12. Simulation of molecules at metallic surfaces using the IC-QM/MM
approach. The isosurface of the electrostatic potential at 0.0065 a.u. (red) and
−0.0065 a.u. (blue) for a single thymine molecule at Au(111). Left: standard
QM/MM approach, where the electrostatic potential of the molecule extends
beyond the surface into the metal. Right: IC-QM/MM approach reproducing the
correct electrostatics expected for a metallic conductor.
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negligible. The IC augmentation adds an attractive interaction
because ρm(r) mirrors the charge distribution of the molecule but
has the opposite sign (see Ref. 352 for the energy expression). There-
fore, the IC scheme strengthens the interactions between molecules
and metallic substrates, in particular, if adsorbates are polar or
even charged. It also partially accounts for the rearrangement of
the electronic structure of the molecules when they approach the
surface.352

The IC-QM/MM approach is a good model for systems, where
the accurate description of the molecule–molecule interactions is
of primary importance and the surface acts merely as a template.
For such systems, it is sufficient when the augmented QM/MM
model predicts the structure of the first adsorption layer cor-
rectly. The IC-QM/MM approach has been applied, for example,
to liquid water/Pt(111) interfaces,352,354 organic thin-film growth
on Au(100),355 as well as aqueous solutions of DNA molecules at
gold interfaces.356,357 Instructions on how to set up an IC-QM/MM
calculation with CP2K can be found in Ref. 358.

4. Partial atomic charges from electrostatic
potential fitting

Electrostatic potential (ESP) fitting is a popular approach to
determine a set of partial atomic point charges {qa}, which can then
be used in, e.g., classical MD simulations to model electrostatic con-
tributions in the force-field. The fitting procedure is applied such
that the charges {qa} optimally reproduce a given potential VQM
obtained from a quantum chemical calculation. To avoid unphysi-
cal values for the fitted charges, restraints (and constraints) are often
set for qa, which are then called RESP charges.359

The QM potential is typically obtained from a preceding DFT
or Hartree–Fock calculation. The difference between VQM(r) and
the potential VRESP(r) generated by {qa} is minimized in a least
squares fitting procedure at defined grid points rk. The residual Resp
that is minimized is

Resp =
1
N

N

∑
k
(VQM(rk) − VRESP(rk))

2, (173)

where N is the total number of grid points included in the fit. The
choice of {rk} is system dependent, and choosing {rk} carefully is
important to obtain meaningful charges. For isolated molecules or
porous periodic structures (e.g., metal–organic frameworks), {rk} are
sampled within a given spherical shell around the atoms defined by a
minimal and a maximal radius. The minimal radius is usually set to
values larger than the van der Waals radius to avoid fitting in spatial
regions, where the potential varies rapidly, which would result in a
destabilization of the fit. As a general guideline, the charges should
be fitted in the spatial regions relevant for interatomic interactions.
CP2K offers also the possibility to fit RESP charges for slab-like sys-
tems. For these systems, it is important to reproduce the potential
accurately above the surface where adsorption processes take place.
The sampling technique is flexible enough to follow a corrugation of
the surface (see Ref. 360).

When calculating RESP charges for periodic systems, periodic
boundary conditions have to be employed for the calculation of
VRESP. In CP2K, the RESP point charges qa are represented as Gaus-
sian functions. The resulting charge distribution is presented on
a regular real-space grid and the GPW formalism is employed to

obtain a periodic RESP potential. Details of the implementation can
be found in Ref. 360.

CP2K features also a GPW implementation of the REPEAT
method,361 which is a modification of the RESP fitting for periodic
systems. The residual in Eq. (173) is modified such that the variance
of the potentials instead of the absolute difference is fitted,

Rrepeat =
1
N

N

∑
k
(VQM(rk) − VRESP(rk) − δ)

2, (174)

where

δ =
1
N

N

∑
k
(VQM(rk) − VRESP(rk)). (175)

The REPEAT method was originally introduced to account for
the arbitrary offset of the electrostatic potential in infinite systems,
which depends on the numerical method used. In CP2K, VQM and
VRESP are both evaluated with the same method, the GPW approach,
and have thus the same offset. However, fitting the variance is an
easier task than fitting the absolute difference in the potentials and
stabilizes significantly the periodic fit. Using the REPEAT method
is thus recommended for the periodic case, in particular for systems
that are not slab-like. For the latter, the potential above the surface
changes very smoothly and we find that δ ≈ 0.360

The periodic RESP and REPEAT implementation in CP2K
has been used to obtain atomic charges for surface systems,
such as corrugated hexagonal boron nitride (hBN) monolayers on
Rh(111).360 These charges were then used in MD QM/MM sim-
ulations of liquid water films (QM) on the hBN@Rh(111) sub-
strate (MM). Other applications comprise two-dimensional periodic
supramolecular structures,362 metal–organic frameworks,363–365 as
well as graphene.366 Detailed instructions on how to set up a RESP
or REPEAT calculation with CP2K can be found under Ref. 367.

B. Density functional embedding theory
Quantum embedding theories are multi-level approaches

applying different electronic structure methods to subsystems, inter-
acting with each other quantum-mechanically.368 Density func-
tional embedding theory (DFET) introduces high-order correlation
to a chemically relevant subsystem (cluster), whereas the environ-
ment and the interaction between the cluster and the environment
are described with DFT via the unique local embedding potential
vemb(r).369 The simplest method to calculate the total energy is in
the first-order perturbation theory fashion,

EDFET
total = EDFT

total + (ECW
cluster,emb − EDFT

cluster,emb), (176)

where EDFT
cluster,emb and EDFT

env,emb are DFT energies of the embedded sub-
systems, whereas ECW

cluster,emb is the energy of the embedded cluster at
the correlated wavefunction (CW) level of theory. All these entities
are computed with an additional one-electron embedding term in
the Hamiltonian.

The embedding potential is obtained from the condition that
the sum of embedded subsystem densities should reconstruct the
DFT density of the total system. This can be achieved by maximizing
the Wu–Yang functional with respect to vemb,370
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W[Vemb] = Ecluster[ρcluster] + Eenv[ρenv]

+ ∫ Vemb(ρtotal − ρcluster − ρenv)dr, (177)

with the functional derivative to be identical to the density difference
δW
δVemb

= ρtotal − ρcluster − ρenv.
The DFET workflow consists of computing the total system

with DFT and obtaining vemb by repeating DFT calculations on the
subsystems with updated embedding potential until the total DFT
density is reconstructed. When the condition is fulfilled, the higher-
level embedded calculation is performed on the cluster. The main
computational cost comes from the DFT calculations. The cost is
reduced by a few factors such as employing a wavefunction extrap-
olation from the previous iterations via the time-reversible always
stable predictor-corrector integrator.312

The DFET implementation is available for closed and open
electronic shells in unrestricted and restricted open-shell variants
for the latter. It is restricted to GPW calculations with pseudopo-
tentials describing the core electrons (i.e., full-electron methods are
currently not available). Any method implemented within QUICKSTEP

is available as a higher-level method, including hybrid DFT, MP2,
and RPA. It is possible to perform property calculations on the
embedded clusters using an externally provided vemb. The subsys-
tems can employ different basis sets, although they must share the
same PW grid.

In our implementation, vemb may be represented on the real-
space grid, as well as using a finite Gaussian basis set, the first option
being preferable, as it allows a much more accurate total density
reconstruction and is computationally cheaper.

C. Implicit solvent techniques
AIMD simulations of solutions, biological systems, or surfaces

in the presence of a solvent are often computationally dominated
by the calculation of the explicit solvent portion, which may eas-
ily amount to 70% of the total number of atoms in a model sys-
tem. Although the first and second sphere or layer of the solvent
molecules around a solute or above a surface might have a direct
impact via chemical bonding, for instance, via a hydrogen bond-
ing network, the bulk solvent mostly interacts electrostatically as a
continuous dielectric medium. This triggered the development of
methods treating the bulk solvent implicitly. Such implicit solvent
methods have also the further advantage that they provide a sta-
tistically averaged effect of the bulk solvent. That is beneficial for
AIMD simulations that consider only a relatively small amount of
bulk solvent and quite short sampling times. The self-consistent
reaction field (SCRF) in a sphere, which goes back to the early work
by Onsager,371 is possibly the most simple implicit solvent method
implemented in CP2K.372,373

More recent continuum solvation models such as the
conductor-like screening model (COSMO),374 as well as the polar-
izable continuum model (PCM),375,376 take also into account the
explicit shape of the solute. The solute–solvent interface is defined
as the surface of a cavity around the solute. This cavity is con-
structed by interlocking spheres centered on the atoms or atomic
groups composing the solute.377 This introduces a discontinuity of
the dielectric function at the solute–solvent interface and thus causes
non-continuous atomic forces, which may impact the convergence
of structural relaxations, as well as the energy conservation within

AIMD runs. To overcome these problems, Fatteberg and Gygi pro-
posed a smoothed self-consistent dielectric model function of the
electronic density ρelec

(r),378,379

ϵ[ρelec
(r)] = 1 +

ϵ0 − 1
2

⎛
⎜
⎝

1 +
1 − (ρelec

(r)/ρ0)
2β

1 + (ρelec(r)/ρ0)
2β

⎞
⎟
⎠

, (178)

with the model parameters β and ρ0, which fulfills the asymptotic
behavior

ϵ(r) ≡ ϵ[ρelec
(r)] = {

1, large ρelec
(r)

ϵ0, ρelec
(r)→ 0.

(179)

The method requires a self-consistent iteration of the polarization
charge density spreading across the solute–solvent interface in each
SCF iteration step, since the dielectric function depends on the
actual electronic density ρelec

(r). This may cause a non-negligible
computational overhead depending on the convergence behavior.

More recently, Andreussi et al. proposed in the framework
of a revised self-consistent continuum solvation (SCCS) model an
improved piecewise defined dielectric model function,380

ϵ[ρelec
(r)] =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

1, ρelec
(r) > ρmax

exp(t), ρmin ≤ ρelec
(r) ≤ ρmax

ϵo, ρelec
(r) < ρmin,

(180)

with t = t[ln(ρelec
(r))] that employs a more elaborated switching

function for the transition from the solute to the solvent region using
the smooth function

t(x) =
ln ϵ0

2π
[2π

(ln ρmax − x)
(ln ρmax − ln ρmin)

− sin(2π
(ln ρmax − x)

(ln ρmax − ln ρmin)
)].

(181)

Both models are implemented in CP2K.381,382

The solvation free energy ΔGsol can be computed by

ΔGsol
= ΔGel + Grep + Gdis + Gcav + Gtm + PΔV (182)

as the sum of the electrostatic contributionΔGel = Gel
−G0, where G0

is the energy of the solute in vacuum, the repulsion energy Grep = α S,
the dispersion energy Gdis = β V, and the cavitation energy Gcav = γ
S, with adjustable solvent specific parameters α, β, and γ.383 Therein,
S and V are the (quantum) surface and volume of the solute cav-
ity, respectively, which are evaluated in CP2K based on the quantum
surface

S = ∫ [ϑ(ρ
elec
(r) −

Δ
2
) − (ρelec

(r) +
Δ
2
)]
∣∇ρelec

(r)∣
Δ

dr (183)

and quantum volume

V = ∫ ϑ[ρelec
(r)]dr, (184)

a definition that was introduced by Cococcioni et al. with

ϑ[ρelec
(r)] =

ϵ0 − ϵ[ρelec
(r)]

ϵ0 − 1
(185)
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using the smoothed dielectric function either from Eq. (179) or
Eq. (180).380,384 The thermal motion term Gtm and the volume
change term PΔV are often ignored and are not yet available in
CP2K.

D. Poisson solvers
The Poisson equation describes how the electrostatic potential

V(r), as a contribution to the Hamiltonian, relates to the charge dis-
tribution within the system with electron density n(r). In a general
form, which incorporates a non-homogeneous position-dependent
dielectric constant ε(r), the equation is formulated as

−∇ ⋅ (ε(r)∇V(r)) = 4πn(r), (186)

endowed with some suitable boundary conditions determined by the
physical characteristics or setup of the considered system.

Under the assumption that everywhere inside the simula-
tion domain, the dielectric constant is equal to that of free space,
i.e., 1, and for periodically repeated systems or boundary condi-
tions for which the analytical Green’s function of the standard
Poisson operator is known, such as free, wire, or surface bound-
ary conditions, a variety of methods have been proposed to solve
Eq. (186). Among these approaches, CP2K implements the con-
ventional PW scheme, Ewald summation based techniques,349,385–388

the Martyna–Tuckerman method,12 and a wavelet based Poisson
solver.14,15 Within the context of continuum solvation models,375

where solvent effects are included implicitly in the form of a dielec-
tric medium,378 the code also provides the solver proposed by
Andreussi et al. that can solve Eq. (186) subject to periodic bound-
ary conditions and with ε defined as a function of the electronic
density.380

Despite the success of these methods in numerous scenar-
ios (for some recent applications, see, e.g., Refs. 381 and 389), the
growing interest in simulating atomistic systems with more com-
plex boundary configurations, e.g., nanoelectronic devices, at an
ab initio level of theory, demands for Poisson solvers with capabili-
ties that exceed those of the existing solvers. To this end, a general-
ized Poisson solver has been developed and implemented in CP2K
with the following key features:390

● The solver converges exponentially with respect to the den-
sity cutoff.

● Periodic or homogeneous von Neumann (zero normal elec-
tric field) boundary conditions can be imposed on the
boundaries of the simulation cell. The latter models insu-
lating interfaces such as air-semiconductor and oxide-
semiconductor interfaces in a transistor.

● Fixed electrostatic potentials (Dirichlet-type boundary con-
ditions) can be enforced at arbitrarily shaped regions within
the domain. These correspond, e.g., to source, drain, and
gate contacts of a nanoscale device.

● The dielectric constant can be expressed as any sufficiently
smooth function.

Therefore, the solver offers advantages associated with the two
categories of Poisson solvers, i.e., PW and real-space-based methods.

The imposition of the above-mentioned boundary setups is
accomplished by solving an equivalent constrained variational prob-
lem that reads as

Find (V , λ) s.t. J(V , λ) = min
u

max
μ

J(u,μ), (187)

where

J(u,μ) =
1
2 ∫Ω

ε∣∇u∣2 dr − ∫
Ω

4πnu dr + ∫
ΩD

μ(u − VD)dr.

(188)

Here, VD is the potential applied at the predefined subdomain ΩD
that may have an arbitrary geometry, whereas u(V) satisfies the
desired boundary conditions at the boundaries of the cell Ω and μ(λ)
are Lagrange multipliers introduced to enforce the constant poten-
tial. Note that the formulation of the problem within Eqs. (187) and
(188) is independent of how ε is defined.

Furthermore, consistent ionic forces have been derived and
implemented that make the solver applicable to a wider range of
applications, such as energy-conserving BOMD391 as well as Ehren-
fest dynamics simulations.392

XIII. DBCSR LIBRARY
DBCSR has been specifically designed to efficiently per-

form block-sparse and dense matrix operations on distributed
multicore CPU and GPU systems, covering a range of occu-
pancy from 0.01% up to dense.114,393,394 The library is written
in Fortran and is freely available under the GPL license from
https://github.com/cp2k/dbcsr. Operations include sum, dot prod-
uct, and multiplication of matrices, and the most important opera-
tions on single matrices, such as transpose and trace.

The DBCSR library was developed to unify the previous dis-
parate implementations of distributed dense and sparse matrix data
structures and the operations among them. The chief performance
optimization target is parallel matrix multiplication. Its performance
objectives have been comparable to ScaLAPACK’s PDGEMM for
dense or nearly dense matrices201 while achieving high performance
when multiplying sparse matrices.114

DBCSR matrices are stored in a blocked compressed sparse
row (CSR) format distributed over a two-dimensional grid of P
MPI processes. Although the library accepts single and double pre-
cision complex and real numbers, it is only optimized for the
double precision real type. The sizes of the blocks in the data
structure are not arbitrary but are determined by the properties
of the data stored in the matrix, such as the basis sets of the
atoms in the molecular system. While this property keeps the
blocks in the matrices dense, it often results in block sizes that
are suboptimal for computer processing, e.g., blocks of 5 × 5,
5 × 13, and 13 × 13 for the H and O atoms described by a DZVP
basis set.

To achieve high performance for the distributed multiplica-
tion of two possibly sparse matrices, several techniques have been
used. One is to focus on reducing communication costs among MPI
ranks. Another is to optimize the performance of multiplying com-
municated data on a node by introducing a separation of concerns:
what will be multiplied vs performing the multiplications. The CPUs
on a node determine what needs to be multiplied, creating batches
of work. These batches are handled by hardware-specific drivers,
such as CPUs, GPUs, or a combination of both. DBCSR’s GPU back-
end, LIBSMM_ACC, supports both NVIDIA and AMD GPUs via
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FIG. 13. Schema of the DBCSR library for the matrix–matrix multiplication (see text
for description).

CUDA and HIP, respectively. A schema of the library is shown in
Fig. 13.

A. Message passing interface parallelization
At the top level, we have the MPI parallelization. The data-

layout exchange is implemented with two different algorithms,
depending on the sizes of the involved matrices in the multiplica-
tions:

● for general matrices (any size), we use the Cannon algo-
rithm, where the amount of communicated data by each
process scales as O(1/

√
P),114,395 and

● only for “tall-and-skinny” matrices (one large dimension),
we use an optimized algorithm, where the amount of com-
municated data by each process scales as O(1).396

The communications are implemented with asynchronous point-to-
point MPI calls. The local multiplication will start as soon as all the
data have arrived at the destination process, and it is possible to over-
lap the local computation with the communication if the network
allows that.

B. Local multiplication
The local computation consists of pairwise multiplications of

small dense matrix blocks, with dimensions (m × k) for A blocks
and (k × n) for B blocks. It employs a cache-oblivious matrix traver-
sal to fix the order in which matrix blocks need to be computed,
to improve memory locality (Traversal phase in Fig. 13). First,
the algorithm loops over A matrix row-blocks and then, for each
row-block, over B matrix column-blocks. Then, the correspond-
ing multiplications are organized in batches (Generation phase in
Fig. 13), where each batch consists of maximum 30 000 multiplica-
tions. During the Scheduler phase, a static assignment of batches
with a given A matrix row-block to OpenMP threads is employed to
avoid data-race conditions. Finally, batches assigned to each thread

can be computed in parallel on the CPU and/or executed on a GPU.
For the GPU execution, batches are organized in such a way that
the transfers between the host and the GPU are minimized. The
multiplication kernels take full advantage of the opportunities
for coalesced memory operations and asynchronous operations.
Moreover, a double-buffering technique, based on CUDA streams
and events, is used to maximize the occupancy of the GPU
and to hide the data transfer latency.393 When the GPU is fully
loaded, the computation may be simultaneously done on the CPU.
Multi-GPU execution on the same node is made possible by
distributing the cards to multiple MPI ranks via a round-robin
assignment.

C. Batched execution
Processing batches of small-matrix-multiplications (SMMs)

have to be highly efficient. For this reason, specific libraries
were developed that outperform vendor BLAS libraries, namely,
LIBSMM_ACC (previously called LIBCUSMM, which is part of DBCSR)
for GPUs,396 as well as LIBXSMM for CPUs.397,398

In LIBSMM_ACC, GPU kernels are just-in-time (JIT) compiled
at runtime. This allows us to reduce DBCSR’s compile time by more
than half and its library’s size by a factor of 6 compared to gener-
ating and compiling kernels ahead-of-time. Figure 14 illustrates the
performance gain that can be observed since the introduction of the
JIT framework: because including a new (m,n,k)-kernel to the library
incurs no additional compile time, nor does it bloat the library size,
all available (m,n,k) batched-multiplications can be run on GPUs,
leading to important speed-ups.

LIBSMM_ACC’s GPU kernels are parametrized over seven
parameters, affecting the memory usages and patterns of the mul-
tiplication algorithms, the amount of work and number of threads
per CUDA block, the number of matrix elements computed by each

FIG. 14. Comparison of DBCSR dense multiplication of square matrices of size
10 000, dominated by different sub-matrix block sizes. With the JIT framework in
place, these blocks are batch-multiplied on a GPU using LIBSMM_ACC, instead
of on the CPU using LIBXSMM. Multiplications were run on a heterogeneous Piz
Daint CRAY XC50 node containing a 12 core Intel Haswell CPU and on a NVIDIA
V100 GPU.
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CUDA thread, and the tiling sizes. An autotuning framework finds
the optimal parameter set for each (m,n,k)-kernel, exploring about
100 000 possible parameter combinations. These parameter com-
binations result in vastly different performances: for example, the
batched multiplication of kernel 5 × 6 × 6 can vary between 10
Gflops and 276 Gflops in performance, with only 2% of the pos-
sible parameter combinations yielding performances within 10%
of the optimum. Kernels are autotuned for NVIDIA’s P100 [1649
(m,n,k)s] and V100 [1235 (m,n,k)s], as well as for AMD’s Mi50 (10
kernels). These autotuning data are then used to train a machine
learning performance prediction model, which finds near–optimal
parameter sets for the rest of the 75 000 available (m,n,k)-kernels.
In this way, the library can achieve a speed-up in the range of
2–4× with respect to batched DGEMM in cuBLAS for {m, n, k}
< 32, while the effect becomes less prominent for larger sizes.398

The performance of LIBSMM_ACC and LIBXSMM saturates for {m,
n, k} > 80, for which DBCSR directly calls cuBLAS or BLAS,
respectively.

LIBXSMM generates kernels using a machine model, e.g., consid-
ering the size of the (vector-)register file. Runtime code generation
in LIBXSMM does not depend on the compiler or flags used and can
naturally exploit instruction set extensions presented by CPUID fea-
tures. The raw machine code is emitted JIT with no compilation
phase and one-time cost (10k–50k kernels per second depending on
the system and kernel). The generated code is kept for the runtime
of an application (such as normal functions) and ready-for-call at a
rate of 20M–40M dispatches per second. Both timings include the
cost of thread-safety or potentially concurrent requests. Any such
overhead is even lower when amortized with homogeneous batches
(same kernel on a per batch basis).

D. Outlook
An arithmetic intensity of AI = 0.3–3 FLOPS/Byte (double-

precision) is incurred by CP2K’s needs. This low AI is bound by the
STREAM Triad vector kernel, given that C = C + A ∗ B is based
on SMMs rather than scalar values.397 Since memory bandwidth
is precious, lower or mixed precision (including single-precision)
can be of interest given emerging support in CPUs and GPUs (see
Sec. XV B).

XIV. INTERFACES TO OTHER PROGRAMS
Beside containing native f77 and f90 interfaces, CP2K also pro-

vides a library, which can be used in your own executable,399,400 and
comes with a small helper program called CP2K-shell that includes
a simple interactive command line interface with a well defined,
parsable syntax. In addition, CP2K can be interfaced with external
programs such as i-PI,401 PLUMED,402 or PyRETIS,403 and its AIMD
trajectories analyzed using TAMk in Ref. 404, MD-Tracks,405 and
TRAVIS,406 to name just a few.

A. Non-equilibrium Green’s function formalism
The non-equilibrium Green’s function (NEGF) formalism

provides a comprehensive framework for studying the transport
mechanism across open nanoscale systems in the ballistic as
well as scattering regimes.407–409 Within the NEGF formalism, all

observables of a system can be obtained from the single-particle
Green’s functions. In the ballistic regime, the main quantity of inter-
est is the retarded Green’s function G, which solves the following
equation:

(E ⋅ S −H − Σ) ⋅G(E) = I, (189)

where E is the energy level of the injected electron; S and H are
the overlap and Hamiltonian matrices, respectively; I is the identity
matrix; and Σ is the boundary (retarded) self-energy that incorpo-
rates the coupling between the central active region of the device
and the semi-infinite leads. A major advantage of the NEGF formal-
ism is that no restrictions are made on the choice of the Hamilto-
nian that means empirical, semi-empirical, or ab initio Hamiltonians
can be used in Eq. (189). Utilizing a typically Kohn–Sham, DFT
Hamiltonian, the DFT + NEGF method has established itself as a
powerful technique due to its capability of modeling charge trans-
port through complex nanostructures without any need for system-
specific parameterizations.410,411 With the goal of designing a DFT
+ NEGF simulator that can handle systems of unprecedented size,
e.g., composed of tens of thousands of atoms, the quantum trans-
port solver OMEN has been integrated within CP2K.412–414 For a
given device configuration, CP2K constructs the DFT Hamiltonian
and overlap matrices. The matrices are passed to OMEN where the
Hamiltonian is modified for open boundaries and charge and cur-
rent densities are calculated in the NEGF or, equivalently, wave
function/quantum transmitting boundary formalisms.415 Due to the
robust and highly efficient algorithms implemented in OMEN and
exploiting hybrid computational resources effectively, devices with
realistic sizes and structural configurations can now be routinely
simulated.416–418

B. SIRIUS: Plane wave density functional theory
support

CP2K supports computations of the electronic ground state,
including forces and stresses,419,420 in a PW basis. The implemen-
tation relies on the quantum engine SIRIUS.421

The SIRIUS library has full support for GPUs and CPUs
and brings additional functionalities to CP2K. Collinear and non-
collinear magnetic systems with or without spin–orbit coupling can
be studied with both pseudopotential PW422 and full-potential lin-
earized augmented PW methods.423,424 All GGA XC functionals
implemented in libxc are available.425 Hubbard corrections are based
on Refs. 426 and 427.

To demonstrate a consistent implementation of the PW ener-
gies, forces, and stresses in CP2K + SIRIUS, an AIMD of a
Si7Ge supercell has been performed in the isothermal–isobaric NPT
ensemble. To establish the accuracy of the calculations, the ground
state energy of the obtained atomic configurations at each time step
has been recomputed with QUANTUM ESPRESSO (QE) using the same
cutoff parameters, XC functionals, and pseudopotentials.428,429 In
Fig. 15, it is shown that the total energy is conserved up to 10−6

hartree. It also shows the evolution of the potential energies calcu-
lated with CP2K + SIRIUS (blue line) and QE (red dashed line). The
two curves are shifted by a constant offset, which can be attributed to
differences in various numerical schemes employed. After removal
of this constant difference, the agreement between the two codes is
of the order of 10−6 hartree.
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FIG. 15. Comparison of potential energies between CP2K + SIRIUS and QE during
an AIMD simulation. The total energy (black curve) remains constant over time (it is
a conserved quantity in the NPT ensemble), while the potential energy calculated
with CP2K + SIRIUS (blue curve) and QE (red dashed curve) have the same time
evolution up to a constant shift in energy (see the lower panel).

XV. TECHNICAL AND COMMUNITY ASPECTS
With an average growth of 200 lines of code per day, the CP2K

code comprises currently more than a million lines of code. Most
of CP2K is written in Fortran95, with elements from Fortran03 and
extensions such as OpenMP, OpenCL, and CUDA C. It also employs
various external libraries in order to incorporate new features and to
decrease the complexity of CP2K, thereby increasing the efficiency
and robustness of the code. The libraries range from basic function-
ality such as MPI,430 fast Fourier transforms (FFTW),431 dense linear
algebra (BLAS, LAPACK, ScaLAPACK, and ELPA),201–203 to more
specialized chemical libraries to evaluate electron repulsion integrals
(libint) and XC functionals (libxc).425,432 CP2K itself can be built as
a library, allowing for easy access to some part of the functional-
ity by external programs. Having lean, library-like interfaces within
CP2K has facilitated the implementation of features such as farming
(running various inputs within a single job), general input parameter
optimization, path-integral MD, or Gibbs-ensemble MC.

Good performance and massive parallel scalability are key fea-
tures of CP2K. This is achieved using a multi-layer structure of
specifically designed parallel algorithms. On the highest level, par-
allel algorithms are based on message passing with MPI, which is

suitable for distributed memory architectures, augmented with
shared memory parallelism based on threading and programmed
using OpenMP directives. Ongoing work aims at porting the main
algorithms of CP2K to accelerators and GPUs as these energy effi-
cient devices become more standard in supercomputers. At the low-
est level, auto-generated and auto-tuned code allows for generating
CPU-specific libraries that deliver good performance without a need
for dedicated code development.

A. Hardware acceleration
CP2K provides mature hardware accelerator support for GPUs

and emerging support for FPGAs. The most computationally inten-
sive kernels in CP2K are handled by the DBCSR library (see
Sec. XIII), which decomposes sparse matrix operations into BLAS
and LIBXSMM library calls. For GPUs, DBCSR provides a CUDA
driver, which offloads these functions to corresponding libraries
for GPUs (LIBSMM_ACC and cuBLAS). FFT operations can also be
offloaded to GPUs using the cuFFT library. For FPGAs, however,
there exist currently no general and widely used FFT libraries that
could be reused. Hence, a dedicated FFT interface has been added
to CP2K and an initial version of an FFT library for offloading
complex-valued, single-precision 3D FFTs of sizes 323–1283 to Intel
Arria 10 and Stratix 10 FPGAs has been released.433

B. Approximate computing
The AC paradigm is an emerging approach to devise tech-

niques for relaxing the exactness to improve the performance and
efficiency of the computation.434 The most common method of
numerical approximation is the use of adequate data-widths in
computationally intensive application kernels. Although many sci-
entific applications use double-precision floating-point by default,
this accuracy is not always required. Instead, low-precision arith-
metic and mixed-precision arithmetic have been very effective for
the computation of inverse matrix roots223 or solving systems of lin-
ear equations.435–438 Driven by the growing popularity of artificial
neural networks that can be evaluated and trained with reduced pre-
cision, hardware accelerators have gained improved low-precision
computing support. For example, NVidia V100 GPU achieves 7
GFlops in double-precision and 15 GFlops in single-precision but
up to 125 GFlops tensor performance with half-precision floating
point operations. Using low-precision arithmetic is thus essential
for exploiting the performance potential of upcoming hardware
accelerators.

However, in scientific computing, where the exactness of all
computed results is of paramount importance, attenuating accu-
racy requirements is not an option. Yet, for specific problem classes,
it is possible to bound or compensate the error introduced by
inaccurate arithmetic. In CP2K, we can apply the AC paradigm
to the force computation within MD and rigorously compensate
the numerical inaccuracies due to low-accuracy arithmetic oper-
ations and still obtain exact ensemble-averaged expectation val-
ues, as obtained by time averages of a properly modified Langevin
equation.

For that purpose, the notion of the second-generation CPMD
method is reversed and we model the nuclear forces as

FN
I = FI + ΞN

I , (190)
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where ΞN
I is an additive white noise that is due to a low-precision

force computation on a GPU or FPGA-based accelerator. Given that
ΞN

I is unbiased, i.e.,

⟨FI(0)ΞN
I (t)⟩ ≅ 0 (191)

holds, it is nevertheless possible to accurately sample the Boltz-
mann distribution by means of a modified Langevin-type equa-
tion,225,439,440

MIR̈I = FN
I − γNMIṘI . (192)

This is to say that that the noise, as originating from a low-precision
computation, can be thought of as an additive white noise channel
associated with a hitherto unknown damping coefficient γN, which
satisfies the fluctuation–dissipation theorem

⟨ΞN
I (0)Ξ

N
I (t)⟩ ≅ 2γNMIkBTδ(t). (193)

As before, the specific value of γN is determined in such a way
so as to generate the correct average temperature, as measured by
the equipartition theorem of Eq. (140), by means of the adaptive
Langevin technique of Jones and co-workers.316–318

C. Benchmarking
To demonstrate the parallel scalability of the various DFT-

based and post–Hartree–Fock electronic structure methods imple-
mented in CP2K, strong-scaling plots with respect to the number of
CPU-cores are shown in Fig. 16.

The benefit of the AC paradigm, described in Sec. XV B, in
terms of the reduction in wall time for the computation of the

FIG. 16. Parallel scaling of CP2K calculations up to thousands of CPU-cores:
single-point energy calculation using GAPW with exact Hartree–Fock exchange
for a periodic 216 atom lithium hydride crystal (red line with circles), single-point
energy calculation using RI-MP2 for 64 water molecules with periodic boundary
conditions (blue line with triangles), and a single-point energy calculation in linear-
scaling DFT for 2048 water molecules in the condensed phase using a DZVP
MOLOPT basis set (green line with boxes). All calculations have been performed
with up to 256 nodes (10 240 CPU-cores) of the Noctua system at PC2.

FIG. 17. Energy deviation and deviation from the idempotency condition of the
density matrix as a function of matrix truncation threshold for the same system
and calculation as in Fig. 6. For the reference energy, a calculation with ϵfilter
= 10−7 was used.

STMV virus, which contains more than one million atoms, is illus-
trated in Fig. 6. Using the periodic implementation in CP2K of the
GFN-xTB model,236 an increase in efficiency of up to one order of
magnitude can be observed within the most relevant matrix-sqrt and
matrix-sign operations of the sign-method described in Sec. VIII E.
The corresponding violation of the idempotency condition of the
density matrix and the energy deviation are shown in Fig. 17. The
resulting error within the nuclear forces can be assumed to be white
and hence can be compensated by means of the modified Langevin
equation of Eq. (192).

D. MOLOPT basis set and delta test
Even though CP2K supports different types of Gaussian-type

basis sets, the MOLOPT type basis set has been found to perform
particularly well for a large number of systems and also targets a
wide range of chemical environments, including the gas phase, inter-
faces, and the condensed phase.26 These generally rather contracted
basis sets, which include diffuse primitives, are obtained by mini-
mizing a linear combination of the total energy and the condition
number of the overlap matrix for a set of molecules with respect to
the exponents and contraction coefficients of the full basis. To verify
reproducibility of DFT codes in the condensed matter community,
the Δ-gauge (194)

Δi(a, b) =

¿
Á
Á
Á
ÁÀ
∫

1.06V0,i

0.94V0,i

(Eb,i(V) − Ea,i(V))2 dV

0.12V0,i
(194)

based on the Birch–Murnaghan equation of state has been estab-
lished.441 To gauge our Δ-test values, we have compared them to
the ones obtained by the plane wave code Abinit,442 where exactly
the same dual-space Goedecker–Teter–Hutter (GTH) pseudopoten-
tials as described in Sec. II B have been employed.23–25 As shown
in Fig. 18, CP2K generally performs fairly well, with the remaining
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FIG. 18. Δ-values for DFT calculations
(using the PBE XC functional and GTH
pseudopotentials) of first to fifth row ele-
ments without Co and Lu, as computed
between the best-performing MOLOPT
[i.e., DZVP, TZVP, or TZV2P(X)] basis
sets and WIEN2k reference results.443

For comparison, the corresponding aver-
age for Abinit is 2.1 meV/atom for the
semicore and 6.3 meV/atom for the reg-
ular pseudopotentials, respectively.444

deviation being attributed to the particular pseudodiagonalization
approach.

E. CP2K workflows
With the abundance of computing power, computational sci-

entists are tackling ever more challenging problems. As a conse-
quence, today’s simulations often require complex workflows. For
example, first, the initial structure is prepared, and then, a series
of geometry optimizations at increasing levels of theory are per-
formed, before the actual observables can be computed, which then
finally need to be post-processed and analyzed. There is a strong
desire to automate these workflows, which not only saves time but
also makes them reproducible and shareable. CP2K is interfaced
with two popular frameworks for automation of such workflows:
The Atomic Simulation Environment (ASE)445 and the Automated
Interactive Infrastructure and Database for Computational Science
(AiiDA).446

The ASE framework is a Python library that is built around the
Atoms and the Calculator classes. An Atoms object stores the proper-
ties of individual atoms such as their positions and atomic numbers.
A Calculator object provides a simple unified API to a chemistry
code such as CP2K. Calculation is performed by passing an Atoms
object to a Calculator object, which then returns energies, nuclear
forces, and other observables. For example, running a CP2K calcu-
lation of a single water molecule requires just a few lines of Python
code:

Based on these two powerful primitives, the ASE provides
a rich library of common building blocks including structure

$ export ASE_CP2K_COMMAND = ”cp2kshell.sopt”
$ python
>>> from ase.calculators.cp2k import CP2K
>>> from ase.build import molecule
>>> calc = CP2K()
>>> atoms = molecule(’H2O’, calculator=calc)
>>> atoms.center(vacuum=2.0)
>>> print(atoms.get_potential_energy())
−467.191035845

generation, MD, local and global geometry optimizations, transition-
state methods, vibration analysis, and many more. As such, the ASE
is an ideal tool for quick prototyping and automatizing a small
number of calculations.

The AiiDA framework, however, aims to enable the emerg-
ing field of high-throughput computations.447 Within this approach,
databases of candidate materials are automatically screened for the
desired target properties. Since a project typically requires thou-
sands of computations, very robust workflows are needed that can
also handle rare failure modes gracefully. To this end, the AiiDA
framework provides a sophisticated event-based workflow engine.
Each workflow step is a functional building block with well defined
inputs and outputs. This design allows the AiiDA engine to trace the
data dependencies throughout the workflows and thereby record the
provenance graph of every result in its database.

F. GitHub and general tooling
The CP2K source code is publicly available and hosted in a Git

repository on https://github.com/cp2k/cp2k. While we still main-
tain a master repository similar to the previous Subversion reposi-
tory, the current development process via pull requests fosters code
reviews and discussion, while the integration with a custom continu-
ous integration system based on the Google Cloud Platform ensures
the stability of the master branch by mandating successful regression
tests prior to merging the code change.448 The pull request based
testing is augmented with a large number of additional regression
testers running on different supercomputers,449 providing over 80%
code coverage across all variants (MPI, OpenMP, CUDA/HIP, and
FPGA) of CP2K.450 These tests are run periodically, rather than trig-
gered live by Git commits, to work around limitations imposed by
the different sites and developers are being informed automatically
in the case of test failures.

Over time, additional code analysis tools have been developed
to help avoid common pitfalls and maintain consistent code style
over the large code base of over 1 × 106 lines of code. Some of
them—like our fprettify tool451—have now been adopted by other
Fortran-based codes.452 To simplify the workflow of the developers,
all code analysis tools not requiring compilation are now invoked
automatically on each Git commit if the developer has setup the pre-
commit hooks for her clone of the CP2K Git repository.453 Since
CP2K has a significant number of optional dependencies, a series

J. Chem. Phys. 152, 194103 (2020); doi: 10.1063/5.0007045 152, 194103-40

© Author(s) 2020

https://scitation.org/journal/jcp
https://github.com/cp2k/cp2k


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

of toolchain scripts have been developed to facilitate the installa-
tion, currently providing the reference environment for running the
regression tests. Alternatively, CP2K packages are directly available
for the Linux distributions Debian,454 Fedora,455 as well as Arch
Linux,456 thanks to the efforts of M. Banck, D. Mierzejewski, and A.
Kudelin. In addition, direct CP2K support is provided by the HPC
package management tools Spack and EasyBuild,457,458 thanks to
M. Culpo and K. Hoste.
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A. Levitt, A. Lherbier, F. Liu, I. Lukačević, A. Martin, C. Martins, M. J. T. Oliveira,
S. Poncé, Y. Pouillon, T. Rangel, G.-M. Rignanese, A. H. Romero, B. Rousseau,
O. Rubel, A. A. Shukri, M. Stankovski, M. Torrent, M. J. Van Setten, B. Van
Troeye, M. J. Verstraete, D. Waroquiers, J. Wiktor, B. Xu, A. Zhou, and J. W.
Zwanziger, Comput. Phys. Commun. 205, 106 (2016).
443K. Lejaeghere, G. Bihlmayer, T. Bjorkman, P. Blaha, S. Blugel, V. Blum, D. Cal-
iste, I. E. Castelli, S. J. Clark, A. Dal Corso, S. de Gironcoli, T. Deutsch, J. K.
Dewhurst, I. Di Marco, C. Draxl, M. Du ak, O. Eriksson, J. A. Flores-Livas, K. F.
Garrity, L. Genovese, P. Giannozzi, M. Giantomassi, S. Goedecker, X. Gonze,
O. Granas, E. K. U. Gross, A. Gulans, F. Gygi, D. R. Hamann, P. J. Hasnip, N. a. W.
Holzwarth, D. Iu an, D. B. Jochym, F. Jollet, D. Jones, G. Kresse, K. Koepernik,
E. Kucukbenli, Y. O. Kvashnin, I. L. M. Locht, S. Lubeck, M. Marsman, N. Marzari,

U. Nitzsche, L. Nordstrom, T. Ozaki, L. Paulatto, C. J. Pickard, W. Poelmans,
M. I. J. Probert, K. Refson, M. Richter, G.-M. Rignanese, S. Saha, M. Scheffler,
M. Schlipf, K. Schwarz, S. Sharma, F. Tavazza, P. Thunstrom, A. Tkatchenko,
M. Torrent, D. Vanderbilt, M. J. van Setten, V. Van Speybroeck, J. M. Wills, J. R.
Yates, G.-X. Zhang, and S. Cottenier, Science 351, aad3000 (2016).
444See https://molmod.ugent.be/deltacodesdft for deltacodesdft
445A. H. Larsen, J. J. Mortensen, J. Blomqvist, I. E. Castelli, R. Christensen,
M. Dulak, J. Friis, M. N. Groves, B. Hammer, C. Hargus, E. D. Hermes, P. C.
Jennings, P. B. Jensen, J. Kermode, J. R. Kitchin, E. L. Kolsbjerg, J. Kubal, K. Kaas-
bjerg, S. Lysgaard, J. B. Maronsson, T. Maxson, T. Olsen, L. Pastewka, A. Peterson,
C. Rostgaard, J. Schiotz, O. Schütt, M. Strange, K. S. Thygesen, T. Vegge, L. Vil-
helmsen, M. Walter, Z. Zeng, and K. W. Jacobsen, J. Phys.: Condens. Matter 29,
273002 (2017).
446G. Pizzi, A. Cepellotti, R. Sabatini, N. Marzari, and B. Kozinsky, Comput. Mat.
Sci. 111, 218 (2016).
447S. Curtarolo, G. L. W. Hart, M. B. Nardelli, N. Mingo, S. Sanvito, and O. Levy,
Nature Mater. 12, 191 (2013).
448https://github.com/cp2k/cp2k-ci
449https://dashboard.cp2k.org/
450https://www.cp2k.org/static/coverage/
451Pseewald/Fprettify, 2019.
452G. Pizzi, V. Vitale, R. Arita, S. Bluegel, F. Freimuth, G. Géranton, M. Gibertini,
D. Gresch, C. Johnson, T. Koretsune, J. Ibanez, H. Lee, J.-M. Lihm, D. Marchand,
A. Marrazzo, Y. Mokrousov, J. I. Mustafa, Y. Nohara, Y. Nomura, L. Paulatto,
S. Ponce, T. Ponweiser, J. Qiao, F. Thöle, S. S. Tsirkin, M. Wierzbowska,
N. Marzari, D. Vanderbilt, I. Souza, A. A. Mostofi, and J. R. Yates, J. Phys.:
Condens. Matter 32, 165902 (2019).
453https://pre-commit.com/
454https://packages.debian.org/search?keywords=cp2k
455https://apps.fedoraproject.org/packages/cp2k
456https://aur.archlinux.org/packages/cp2k/
457https://spack.readthedocs.io/en/latest/package_list.html#cp2k
458https://github.com/easybuilders/easybuild-easyconfigs

J. Chem. Phys. 152, 194103 (2020); doi: 10.1063/5.0007045 152, 194103-47

© Author(s) 2020

https://scitation.org/journal/jcp
https://doi.org/10.1098/rsta.2013.0278
https://doi.org/10.1098/rsta.2013.0278
https://doi.org/10.1016/j.suscom.2015.10.001
https://doi.org/10.1063/1.4902537
https://doi.org/10.3390/computation8020039
https://doi.org/10.1080/10408436.2013.772503
https://doi.org/10.1080/10408436.2013.772503
https://doi.org/10.1016/j.cpc.2016.04.003
https://doi.org/10.1126/science.aad3000
https://molmod.ugent.be/deltacodesdft
https://doi.org/10.1088/1361-648x/aa680e
https://doi.org/10.1016/j.commatsci.2015.09.013
https://doi.org/10.1016/j.commatsci.2015.09.013
https://doi.org/10.1038/nmat3568
https://github.com/cp2k/cp2k-ci
https://dashboard.cp2k.org/
https://www.cp2k.org/static/coverage/
https://doi.org/10.1088/1361-648x/ab51ff
https://doi.org/10.1088/1361-648x/ab51ff
https://pre-commit.com/
https://packages.debian.org/search?keywords=cp2k
https://apps.fedoraproject.org/packages/cp2k
https://aur.archlinux.org/packages/cp2k/
https://spack.readthedocs.io/en/latest/package_list.html#cp2k
https://github.com/easybuilders/easybuild-easyconfigs

