The identifi cation of individual past earthquakes and their characterization in time and space, as well as in magnitude, can be approached in many different ways with a large variety of methods and techniques, using a wide spectrum of objects and features. We revise the stratigraphic and geomorphic evidence currently used in the study of paleoseismicity, after more than three decades since the work by Allen (1975), which was arguably the fi rst critical overview in the fi eld of earthquake geology. Natural objects or geomarkers suitable for paleoseismic analyses are essentially preserved in the sediments, and in a broader sense, in the geologic record. Therefore, the study of these features requires the involvement of geoscientists, but very frequently it is a multidisciplinary effort. The constructed environment and heritage, which typically are the focus of archaeoseismology and macroseismology, here are left aside. The geomarkers suitable to paleoseismic assessment can be grouped based on their physical relation to the earthquake’s causative fault. If directly associated with the fault surface rupture, these objects are known as direct or on-fault features (primary effects in the Environmental Seismic Intensity [ESI] 2007 scale). Conversely, those indicators not in direct contact with the fault plane are known as indirect or off-fault evidence (secondary effects in the ESI 2007 scale).

Geological Criteria for Evaluating Seismicity Revisited: Forty Years of Paleoseismic Investigations and the Natural Record of Past Earthquakes

MICHETTI, ALESSANDRO MARIA
2011-01-01

Abstract

The identifi cation of individual past earthquakes and their characterization in time and space, as well as in magnitude, can be approached in many different ways with a large variety of methods and techniques, using a wide spectrum of objects and features. We revise the stratigraphic and geomorphic evidence currently used in the study of paleoseismicity, after more than three decades since the work by Allen (1975), which was arguably the fi rst critical overview in the fi eld of earthquake geology. Natural objects or geomarkers suitable for paleoseismic analyses are essentially preserved in the sediments, and in a broader sense, in the geologic record. Therefore, the study of these features requires the involvement of geoscientists, but very frequently it is a multidisciplinary effort. The constructed environment and heritage, which typically are the focus of archaeoseismology and macroseismology, here are left aside. The geomarkers suitable to paleoseismic assessment can be grouped based on their physical relation to the earthquake’s causative fault. If directly associated with the fault surface rupture, these objects are known as direct or on-fault features (primary effects in the Environmental Seismic Intensity [ESI] 2007 scale). Conversely, those indicators not in direct contact with the fault plane are known as indirect or off-fault evidence (secondary effects in the ESI 2007 scale).
2011
9780813724799
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/1729807
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact