Recent foundational approaches to Infinitesimal Analysis are essentially algebraic or computational, whereas the first approaches to such problems were geometrical. From this perspective, we may recall the seventeenth-century investigations of the “inverse tangent problem.” Suggested solutions to this problem involved certain machines, intended as both theoretical and actual instruments, which could construct transcendental curves through so-called tractional motion. The main idea of this work is to further develop tractional motion to investigate if and how, at a very first analysis, these ideal machines (like the ancient straightedge and compass) can constitute the basis of a purely geometrical and finitistic axiomatic foundation (like Euclid’s planar geometry) for a class of differential problems. In particular, after a brief historical introduction, a model of such machines (i.e., the suggested components) is presented. Then, we introduce some preliminary results about generable functions, an example of a “tractional” planar machine embodying the complex exponential function, and, finally, a didactic proposal for this kind of artifact.

A geometrical constructive approach to infinitesimal analysis: epistemological potential and boundaries of tractional motion

Milici P
2015-01-01

Abstract

Recent foundational approaches to Infinitesimal Analysis are essentially algebraic or computational, whereas the first approaches to such problems were geometrical. From this perspective, we may recall the seventeenth-century investigations of the “inverse tangent problem.” Suggested solutions to this problem involved certain machines, intended as both theoretical and actual instruments, which could construct transcendental curves through so-called tractional motion. The main idea of this work is to further develop tractional motion to investigate if and how, at a very first analysis, these ideal machines (like the ancient straightedge and compass) can constitute the basis of a purely geometrical and finitistic axiomatic foundation (like Euclid’s planar geometry) for a class of differential problems. In particular, after a brief historical introduction, a model of such machines (i.e., the suggested components) is presented. Then, we introduce some preliminary results about generable functions, an example of a “tractional” planar machine embodying the complex exponential function, and, finally, a didactic proposal for this kind of artifact.
2015
978-3-319-10433-1
File in questo prodotto:
File Dimensione Formato  
Milici_Geometrical Constructive Approach to Infinitesimal Analysis.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: DRM non definito
Dimensione 475.29 kB
Formato Adobe PDF
475.29 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/2120796
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 7
social impact