The problem of computing the quantum dynamical entropy introduced by Alicki and Fannes requires the trace of the operator function $F(\Omega) = - \Omega \log \Omega$, where $\Omega$ is a non-negative, Hermitean operator. Physical significance demands that this operator be a matrix of large order. We study its properties and we derive efficient algorithms to solve this problem, also implementable on parallel machines with distributed memory. We rely on a Lanczos technique for large matrix computations developed by Gene Golub.
Autori: | MANTICA, GIORGIO DOMENICO PIO (Primo) (Corresponding) |
Data di pubblicazione: | 2008 |
Titolo: | Quantum dynamical entropy and an algorithm by Gene Golub |
Rivista: | ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS |
Codice identificativo ISI: | WOS:000260536900013 |
Codice identificativo Scopus: | 2-s2.0-54549113318 |
Parole Chiave: | Quantum dynamical entropy; large matrices; Lanczos method; Montecarlo techniques. |
Appare nelle tipologie: | Articolo su Rivista |
File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.