The problem of computing the quantum dynamical entropy introduced by Alicki and Fannes requires the trace of the operator function $F(\Omega) = - \Omega \log \Omega$, where $\Omega$ is a non-negative, Hermitean operator. Physical significance demands that this operator be a matrix of large order. We study its properties and we derive efficient algorithms to solve this problem, also implementable on parallel machines with distributed memory. We rely on a Lanczos technique for large matrix computations developed by Gene Golub.

Quantum dynamical entropy and an algorithm by Gene Golub

MANTICA, GIORGIO DOMENICO PIO
Primo
2008-01-01

Abstract

The problem of computing the quantum dynamical entropy introduced by Alicki and Fannes requires the trace of the operator function $F(\Omega) = - \Omega \log \Omega$, where $\Omega$ is a non-negative, Hermitean operator. Physical significance demands that this operator be a matrix of large order. We study its properties and we derive efficient algorithms to solve this problem, also implementable on parallel machines with distributed memory. We rely on a Lanczos technique for large matrix computations developed by Gene Golub.
2008
Quantum dynamical entropy; large matrices; Lanczos method; Montecarlo techniques.
Mantica, GIORGIO DOMENICO PIO
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/10435
 Attenzione

L'Ateneo sottopone a validazione solo i file PDF allegati

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact