1-β-D-arabinofuranosylcytosine (ara-C) is an antimetabolite used for the treatment of acute myelogenous leukemia. The ability of ara-C to kill neoplastic cells has been correlated to the induction of apoptosis. The clinical use of ara-C is limited by the development of drug resistance. Alterations in drug-induced apoptosis play a critical role in ara-C resistance. In particular, the proto-oncogene bcl-2 has been implicated in this phenomenon. To better understand the molecular basis of the role of bcl-2 in ara-C resistance, we investigated the relationship between the cytotoxic effect of ara-C, the expression levels and the subcellular localization of bcl-2 in three human leukemic cell lines (HL-60, KG1, J111). We have also evaluated the effects of ara-C on the J111 leukemic cell line (showing the lowest levels of Bcl-2 and the highest sensitivity to ara-C) overexpressing the bcl-2 oncogene. The model we developed here will allow further studies on the role of post-translational events involving bcl-2 (such as translocation and/or phosphorylation) in the cellular response to ara-C treatment.

Resistance of human leukemic cell lines to 1-beta-D-arabinofuranosylcytosine: characterization of an experimental model

GARIBOLDI, MARZIA BRUNA;RAVIZZA, RAFFAELLA;MARRAS, EMANUELA;PERLETTI, GIANPAOLO;PICCININI, FRANCESCO;MONTI, ELENA CATERINA
2001-01-01

Abstract

1-β-D-arabinofuranosylcytosine (ara-C) is an antimetabolite used for the treatment of acute myelogenous leukemia. The ability of ara-C to kill neoplastic cells has been correlated to the induction of apoptosis. The clinical use of ara-C is limited by the development of drug resistance. Alterations in drug-induced apoptosis play a critical role in ara-C resistance. In particular, the proto-oncogene bcl-2 has been implicated in this phenomenon. To better understand the molecular basis of the role of bcl-2 in ara-C resistance, we investigated the relationship between the cytotoxic effect of ara-C, the expression levels and the subcellular localization of bcl-2 in three human leukemic cell lines (HL-60, KG1, J111). We have also evaluated the effects of ara-C on the J111 leukemic cell line (showing the lowest levels of Bcl-2 and the highest sensitivity to ara-C) overexpressing the bcl-2 oncogene. The model we developed here will allow further studies on the role of post-translational events involving bcl-2 (such as translocation and/or phosphorylation) in the cellular response to ara-C treatment.
2001
Gariboldi, MARZIA BRUNA; Ravizza, Raffaella; Marras, Emanuela; Perletti, Gianpaolo; De Simone, A.; Piccinini, Francesco; Monti, ELENA CATERINA
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/14835
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact