We study both analytically and numerically the decay of fidelity of classical motion for integrable systems. We find that the decay can exhibit two qualitatively different behaviors, namely, an algebraic decay that is due to the perturbation of the shape of the tori or a ballistic decay that is associated with perturbing the frequencies of the tori. The type of decay depends on initial conditions and on the shape of the perturbation but, for small enough perturbations, not on its size. We demonstrate numerically this general behavior for the cases of the twist map, the rectangular billiard, and the kicked rotor in the almost integrable regime.

Decay of the classical Loschmidt echo in integrable systems

BENENTI, GIULIANO;CASATI, GIULIO;
2003-01-01

Abstract

We study both analytically and numerically the decay of fidelity of classical motion for integrable systems. We find that the decay can exhibit two qualitatively different behaviors, namely, an algebraic decay that is due to the perturbation of the shape of the tori or a ballistic decay that is associated with perturbing the frequencies of the tori. The type of decay depends on initial conditions and on the shape of the perturbation but, for small enough perturbations, not on its size. We demonstrate numerically this general behavior for the cases of the twist map, the rectangular billiard, and the kicked rotor in the almost integrable regime.
2003
Benenti, Giuliano; Casati, Giulio; Veble, G.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/1485785
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 23
  • ???jsp.display-item.citation.isi??? 22
social impact