Amiodarone is a benzofuranic-derivative iodine-rich drug widely used for the treatment of tachyarrhythmias and, to a lesser extent, of ischemic heart disease. It often causes changes in thyroid function tests (typically an increase in serum T4 and rT3, and a decrease in serum T3, concentrations), mainly related to the inhibition of 5′deiodinase activity, resulting in a decrease in the generation of T3 from T4 and a decrease in the clearance of rT3. In 14-18% of amiodarone-treated patients, there is overt thyroid dysfunction, either amiodarone-induced thyrotoxicosis (AIT) or amiodarone-induced hypothyroidism (AIH). Both AIT and AIH may develop either in apparently normal thyroid glands or in glands with preexisting, clinically silent abnormalities. Preexisting Hashimoto's thyroiditis is a definite risk factor for the occurrence of AIH. The pathogenesis of iodine-induced AIH is related to a failure to escape from the acute Wolff-Chaikoff effect due to defects in thyroid hormonogenesis, and, in patients with positive thyroid autoantibody tests, to concomitant Hashimoto's thyroiditis. AIT is primarily related to excess iodine-induced thyroid hormone synthesis in an abnormal thyroid gland (type I AIT) or to amiodarone-related destructive thyroiditis (type II AIT), but mixed forms frequently exist. Treatment of AIH consists of L-T4 replacement while continuing amiodarone therapy; alternatively, if feasible, amiodarone can be discontinued, especially in the absence of thyroid abnormalities, and the natural course toward euthyroidism can be accelerated by a short course of potassium perchlorate treatment. In type I AIT the main medical treatment consists of the simultaneous administration of thionamides and potassium perchlorate, while in type II AIT, glucocorticoids are the most useful therapeutic option. Mixed forms are best treated with a combination of thionamides, potassium perchlorate, and glucocorticoids. Radioiodine therapy is usually not feasible due to the low thyroidal radioiodine uptake, while thyroidectomy can be performed in cases resistant to medical therapy, with a slightly increased surgical risk.

The effects of amiodarone on the thyroid

BARTALENA, LUIGI;
2001-01-01

Abstract

Amiodarone is a benzofuranic-derivative iodine-rich drug widely used for the treatment of tachyarrhythmias and, to a lesser extent, of ischemic heart disease. It often causes changes in thyroid function tests (typically an increase in serum T4 and rT3, and a decrease in serum T3, concentrations), mainly related to the inhibition of 5′deiodinase activity, resulting in a decrease in the generation of T3 from T4 and a decrease in the clearance of rT3. In 14-18% of amiodarone-treated patients, there is overt thyroid dysfunction, either amiodarone-induced thyrotoxicosis (AIT) or amiodarone-induced hypothyroidism (AIH). Both AIT and AIH may develop either in apparently normal thyroid glands or in glands with preexisting, clinically silent abnormalities. Preexisting Hashimoto's thyroiditis is a definite risk factor for the occurrence of AIH. The pathogenesis of iodine-induced AIH is related to a failure to escape from the acute Wolff-Chaikoff effect due to defects in thyroid hormonogenesis, and, in patients with positive thyroid autoantibody tests, to concomitant Hashimoto's thyroiditis. AIT is primarily related to excess iodine-induced thyroid hormone synthesis in an abnormal thyroid gland (type I AIT) or to amiodarone-related destructive thyroiditis (type II AIT), but mixed forms frequently exist. Treatment of AIH consists of L-T4 replacement while continuing amiodarone therapy; alternatively, if feasible, amiodarone can be discontinued, especially in the absence of thyroid abnormalities, and the natural course toward euthyroidism can be accelerated by a short course of potassium perchlorate treatment. In type I AIT the main medical treatment consists of the simultaneous administration of thionamides and potassium perchlorate, while in type II AIT, glucocorticoids are the most useful therapeutic option. Mixed forms are best treated with a combination of thionamides, potassium perchlorate, and glucocorticoids. Radioiodine therapy is usually not feasible due to the low thyroidal radioiodine uptake, while thyroidectomy can be performed in cases resistant to medical therapy, with a slightly increased surgical risk.
2001
Martino, E; Bartalena, Luigi; Bogazzi, F; Braverman, Le
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/1486113
Citazioni
  • ???jsp.display-item.citation.pmc??? 73
  • Scopus 484
  • ???jsp.display-item.citation.isi??? 364
social impact