We present analytical and numerical results on the heat conduction in a linear mixing system. In particular we consider a quasi-one-dimensional channel with triangular scatterers with internal angles which are irrational multiples of pi, and we show that the system obeys the Fourier law of heat conduction. Therefore, deterministic diffusion and normal heat transport which are usually associated with full hyperbolicity, actually take place in systems without exponential instability.

Heat conductivity in linear mixing systems

CASATI, GIULIO;
2003

Abstract

We present analytical and numerical results on the heat conduction in a linear mixing system. In particular we consider a quasi-one-dimensional channel with triangular scatterers with internal angles which are irrational multiples of pi, and we show that the system obeys the Fourier law of heat conduction. Therefore, deterministic diffusion and normal heat transport which are usually associated with full hyperbolicity, actually take place in systems without exponential instability.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11383/1486869
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 54
  • ???jsp.display-item.citation.isi??? 51
social impact