We study a notion of well-posedness in vector optimization through the behaviour of minimizing sequences of sets, defined in terms of Hausdorff set-convergence. We show that the notion of strict efficiency is related to the notion of well-posedness. Using the obtained results we identify a class of well-posed vector optimization problems: the convex problems with compact efficient frontiers.
Autori: | |
Data di pubblicazione: | 2003 |
Titolo: | Well-posedness and convexity in vector optimization |
Rivista: | MATHEMATICAL METHODS OF OPERATIONS RESEARCH |
Digital Object Identifier (DOI): | 10.1007/s001860300310 |
Codice identificativo ISI: | WOS:000186889600002 |
Codice identificativo Scopus: | 2-s2.0-18744388228 |
Parole Chiave: | Vector optimization; Well-posedness; Stability; Hausdorff set convergence |
Appare nelle tipologie: | Articolo su Rivista |
File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.