KAAT1 is a neutral amino acid transporter activated by K+ or by Na+ (9). The protein shows significant homology with members of the Na+/Cl--dependent neurotransmitter transporter super family. E59G KAAT1, expressed in Xenopus oocytes, exhibited a reduced leucine uptake [20-30% of wild-type (WT)], and kinetic analysis indicated that the loss of activity was due to reduction of Vmax and apparent affinity for substrates. Electrophysiological analysis revealed that E59G KAAT1 has presteady-state and uncoupled currents larger than WT but no leucine-induced currents. Site-directed mutagenesis analysis showed the requirement of a negative charge in position 59 of KAAT1. The analysis of permeant and impermeant methanethiosulfonate reagent effects confirmed the intracellular localization of glutamate 59. Because the 2-aminoethyl methanethiosulfonate hydrobromid inhibition was not prevented by the presence of Na+ or leucine, we concluded that E59 is not directly involved in the binding of substrates. N-ethylmaleimide inhibition was qualitatively and quantitatively different in the two transporters, WT and E59G KAAT1, having the same cysteine residues. This indicates an altered accessibility of native cysteine residues due to a modified spatial organization of E59G KAAT1. The arginine modifier phenylglyoxal effect supports this hypothesis: not only cysteine but also arginine residues become more accessible to the modifying reagents in the mutant E59G. In conclusion, the results presented indicate that glutamate 59 plays a critical role in the three-dimensional organization of KAAT1.

Glutamate 59 is critical for transport function of the amino acid cotransporter KAAT1

BOSSI, ELENA;PERES, ANTONIO
2003-01-01

Abstract

KAAT1 is a neutral amino acid transporter activated by K+ or by Na+ (9). The protein shows significant homology with members of the Na+/Cl--dependent neurotransmitter transporter super family. E59G KAAT1, expressed in Xenopus oocytes, exhibited a reduced leucine uptake [20-30% of wild-type (WT)], and kinetic analysis indicated that the loss of activity was due to reduction of Vmax and apparent affinity for substrates. Electrophysiological analysis revealed that E59G KAAT1 has presteady-state and uncoupled currents larger than WT but no leucine-induced currents. Site-directed mutagenesis analysis showed the requirement of a negative charge in position 59 of KAAT1. The analysis of permeant and impermeant methanethiosulfonate reagent effects confirmed the intracellular localization of glutamate 59. Because the 2-aminoethyl methanethiosulfonate hydrobromid inhibition was not prevented by the presence of Na+ or leucine, we concluded that E59 is not directly involved in the binding of substrates. N-ethylmaleimide inhibition was qualitatively and quantitatively different in the two transporters, WT and E59G KAAT1, having the same cysteine residues. This indicates an altered accessibility of native cysteine residues due to a modified spatial organization of E59G KAAT1. The arginine modifier phenylglyoxal effect supports this hypothesis: not only cysteine but also arginine residues become more accessible to the modifying reagents in the mutant E59G. In conclusion, the results presented indicate that glutamate 59 plays a critical role in the three-dimensional organization of KAAT1.
2003
XENOPUS-LAEVIS OOCYTES, BORDER MEMBRANE-VESICLES, AMINO ACID TRANSPORTER, NEUROTRANSMITTER TRANSPORT, SUBSTRATE SELECTIVITY, STATE CURRENTS
Sacchi, Vf; Castagna, M; Mari, Sa; Perego, C; Bossi, Elena; Peres, Antonio
File in questo prodotto:
File Dimensione Formato  
2003_AMJ_285_C623.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: DRM non definito
Dimensione 525.9 kB
Formato Adobe PDF
525.9 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/1489919
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 7
social impact