When testing that a sample of n points in the unit hypercube [0,1]d comes from a uniform distribution, the Kolmogorov-Smirnov and the Cramér-von Mises statistics are simple and well-known procedures. To encompass these measures of uniformity, Hickernell (1996, 1998) introduced the so-called generalized Lp−discrepancies. These discrepancies can be used in numerical integration by Monte Carlo and quasi-Monte Carlo methods, design of experiments, uniformity testing and goodness of fit tests. The aim of this paper is to derive the strong and weak asymptotic properties of these statistics.

Statistical Properties of Generalized Discrepancies and Related Quantities

SERI, RAFFAELLO
2003-01-01

Abstract

When testing that a sample of n points in the unit hypercube [0,1]d comes from a uniform distribution, the Kolmogorov-Smirnov and the Cramér-von Mises statistics are simple and well-known procedures. To encompass these measures of uniformity, Hickernell (1996, 1998) introduced the so-called generalized Lp−discrepancies. These discrepancies can be used in numerical integration by Monte Carlo and quasi-Monte Carlo methods, design of experiments, uniformity testing and goodness of fit tests. The aim of this paper is to derive the strong and weak asymptotic properties of these statistics.
2003
Atti del Convegno S.CO. 2003, Modelli Complessi e Metodi Computazionali per la Stima e la Previsione
S.CO. 2003, Modelli Complessi e Metodi Computazionali per la Stima e la Previsione, Treviso (I)
Treviso
4-6 September 2003
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/1490545
 Attenzione

L'Ateneo sottopone a validazione solo i file PDF allegati

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact