The present work develops a new approach for studying the dynamic evolution of a vector optimization problem.We introduce a convenient differential inclusion that rules the dynamics of the optimization problem. Actually we consider a sort of ‘gradient system’ defined by vector valued functions. The main tool used is a completely new adaptation to the vector problem of the notion of pseudogradient, which is a well-known concept in the modern critical point theory. Finally we study a special class of solutions of the above quoted differential inclusion: the slow solutions.

Slow solutions of differential inclusions and vector optimization

MIGLIERINA, ENRICO
2004

Abstract

The present work develops a new approach for studying the dynamic evolution of a vector optimization problem.We introduce a convenient differential inclusion that rules the dynamics of the optimization problem. Actually we consider a sort of ‘gradient system’ defined by vector valued functions. The main tool used is a completely new adaptation to the vector problem of the notion of pseudogradient, which is a well-known concept in the modern critical point theory. Finally we study a special class of solutions of the above quoted differential inclusion: the slow solutions.
pseudogradient; critical points for vector valued functions; slow solution; gradient systems; vector optimization
Miglierina, Enrico
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11383/1492164
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact