We have combined structural and functional approaches to investigate the role of oligomerization in the operation of the GABA transporter rGAT1. Xenopus laevis oocytes were induced to express, either separately or simultaneously, the wild-type form of rGAT1 and a mutated (Y140W) form, unable to translocate GABA and to generate transport currents, although its intramembrane charge movement properties are only slightly affected. These characteristics, together with the insensitivity of Y140W to the blocking action of SKF89976A, were used to study the possible functional interaction of the two forms in an heteromeric structure. The electrophysiological data from oocytes coexpressing wild-type and Y140W rGAT1 were consistent with a completely independent activity of the two forms. Oligomerization was also studied by fluorescence resonance energy transfer (FRET) in tsA201 cells expressing the transporters fused with cyan and yellow fluorescent proteins (ECFP and EYFP). All combinations tested (WT-ECFP/WTEYFP, Y140W-ECFP/Y140W-EYFP and WT-ECFP/ Y140W-EYFP) were able to give rise to FRET, confirming the formation of homo- as well as heterooligomers. We conclude that, although rGAT1 undergoes structural oligomerization, each monomer operates independently.

Functionally independent subunits in the oligomeric structure of the GABA cotransporter rGAT1

BOSSI, ELENA;GIOVANNARDI, STEFANO;PERES, ANTONIO
2005-01-01

Abstract

We have combined structural and functional approaches to investigate the role of oligomerization in the operation of the GABA transporter rGAT1. Xenopus laevis oocytes were induced to express, either separately or simultaneously, the wild-type form of rGAT1 and a mutated (Y140W) form, unable to translocate GABA and to generate transport currents, although its intramembrane charge movement properties are only slightly affected. These characteristics, together with the insensitivity of Y140W to the blocking action of SKF89976A, were used to study the possible functional interaction of the two forms in an heteromeric structure. The electrophysiological data from oocytes coexpressing wild-type and Y140W rGAT1 were consistent with a completely independent activity of the two forms. Oligomerization was also studied by fluorescence resonance energy transfer (FRET) in tsA201 cells expressing the transporters fused with cyan and yellow fluorescent proteins (ECFP and EYFP). All combinations tested (WT-ECFP/WTEYFP, Y140W-ECFP/Y140W-EYFP and WT-ECFP/ Y140W-EYFP) were able to give rise to FRET, confirming the formation of homo- as well as heterooligomers. We conclude that, although rGAT1 undergoes structural oligomerization, each monomer operates independently.
2005
RESONANCE ENERGY-TRANSFER, HUMAN DOPAMINE TRANSPORTER, HUMAN GLUTAMATE TRANSPORTERS, HUMAN SEROTONIN TRANSPORTER, NEUROTRANSMITTER TRANSPORTERS, LIVING CELLS, TRANSMEMBRANE SEGMENT, QUATERNARY STRUCTURE, TRANSFER MICROSCOPY, POTASSIUM CHANNEL; GABA TRANSPORTER; XENOPUS OOCYTES EXPRESSION
Soragna, A; Bossi, Elena; Giovannardi, Stefano; Pisani, R; Peres, Antonio
File in questo prodotto:
File Dimensione Formato  
2005_CMLS_62_2877.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: DRM non definito
Dimensione 330.34 kB
Formato Adobe PDF
330.34 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/1495161
Citazioni
  • ???jsp.display-item.citation.pmc??? 10
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 14
social impact