In this paper we give a unified and improved treatment to finite dimensionality results for subspaces of Lp harmonic sections of Riemannian or Hermitian vector bundles over complete manifolds. The geometric conditions on the manifold are subsumed by the assumption that the Morse index of a related Schro ̈dinger operator is finite. Applications of the finiteness theorem to concrete geometric situations are also presented.

A finiteness theorem for the space of Lp harmonic sections

PIGOLA, STEFANO;SETTI, ALBERTO GIULIO
2008-01-01

Abstract

In this paper we give a unified and improved treatment to finite dimensionality results for subspaces of Lp harmonic sections of Riemannian or Hermitian vector bundles over complete manifolds. The geometric conditions on the manifold are subsumed by the assumption that the Morse index of a related Schro ̈dinger operator is finite. Applications of the finiteness theorem to concrete geometric situations are also presented.
http://projecteuclid.org/euclid.rmi/1216247097
Pigola, Stefano; M., Rigoli; Setti, ALBERTO GIULIO
File in questo prodotto:
File Dimensione Formato  
PigolaRigoliSetti_FinitenessTheoremLpHarmonicSections_Revista(2008).pdf

accesso aperto

Descrizione: PDF editoriale
Tipologia: Altro materiale allegato
Licenza: Creative commons
Dimensione 232.54 kB
Formato Adobe PDF
232.54 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/1497831
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact