The effect of pH on the X-band electron paramagnetic resonance (EPR) spectrum of ferrous nitrosylated human adult tetrameric hemoglobin (HbNO) as well as of ferrous nitrosylated monomeric α- and β-chains has been investigated, at -163°C. At pH 7.3, the X-band EPR spectrum of tetrameric HbNO and ferrous nitrosylated monomeric α- and β-chains displays a rhombic shape. Lowering the pH from 7.3 to 3.0, tetrameric HbNO and ferrous nitrosylated monomeric α- and β-chains undergo a transition towards a species characterized by a X-band EPR spectrum with a three-line splitting centered at 334 mT. These pH-dependent spectroscopic changes may be taken as indicative of the cleavage, or the severe weakening, of the proximal HisF8-Fe bond. In tetrameric HbNO, the pH-dependent spectroscopic changes depend on the acid-base equilibrium of two apparent ionizing groups with pKa values of 5.8 and 3.8. By contrast, the pH-dependent spectroscopic changes occurring in ferrous nitrosylated monomeric α- and β-chains depend on the acid-base equilibrium of one apparent ionizing group with pKa values of 4.8 and 4.7, respectively. The different pKa values for the proton-linked spectroscopic transition(s) of tetrameric HbNO and ferrous nitrosylated monomeric α- and β-chains suggest that the quaternary assembly drastically affects the strength of the proximal HisF8-Fe bond in both subunits. This probably reflects a 'quaternary effect', i.e., structural changes in both subunits upon tetrameric assembly, which is associated to a relevant variation of functional properties (i.e., proton affinity).

Proton-linked subunit heterogeneity in ferrous nitrosylated human adult hemoglobin: an EPR study

FASANO, MAURO;
2005-01-01

Abstract

The effect of pH on the X-band electron paramagnetic resonance (EPR) spectrum of ferrous nitrosylated human adult tetrameric hemoglobin (HbNO) as well as of ferrous nitrosylated monomeric α- and β-chains has been investigated, at -163°C. At pH 7.3, the X-band EPR spectrum of tetrameric HbNO and ferrous nitrosylated monomeric α- and β-chains displays a rhombic shape. Lowering the pH from 7.3 to 3.0, tetrameric HbNO and ferrous nitrosylated monomeric α- and β-chains undergo a transition towards a species characterized by a X-band EPR spectrum with a three-line splitting centered at 334 mT. These pH-dependent spectroscopic changes may be taken as indicative of the cleavage, or the severe weakening, of the proximal HisF8-Fe bond. In tetrameric HbNO, the pH-dependent spectroscopic changes depend on the acid-base equilibrium of two apparent ionizing groups with pKa values of 5.8 and 3.8. By contrast, the pH-dependent spectroscopic changes occurring in ferrous nitrosylated monomeric α- and β-chains depend on the acid-base equilibrium of one apparent ionizing group with pKa values of 4.8 and 4.7, respectively. The different pKa values for the proton-linked spectroscopic transition(s) of tetrameric HbNO and ferrous nitrosylated monomeric α- and β-chains suggest that the quaternary assembly drastically affects the strength of the proximal HisF8-Fe bond in both subunits. This probably reflects a 'quaternary effect', i.e., structural changes in both subunits upon tetrameric assembly, which is associated to a relevant variation of functional properties (i.e., proton affinity).
2005
Ascenzi, P; Bocedi, A; Fasano, Mauro; Gioia, M; Marini, S; Coletta, M.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/1499750
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact