Attenzione: i dati modificati non sono ancora stati salvati. Per confermare inserimenti o cancellazioni di voci è necessario confermare con il tasto SALVA/INSERISCI in fondo alla pagina
IRIS - Institutional Research Information System IRIS è il sistema di gestione integrata dei dati della ricerca (persone, progetti, pubblicazioni, attività) adottato dall'Università degli Studi dell’Insubria.
IRInSubria - Institutional Repository Insubria IRInSubria raccoglie, conserva, documenta e dissemina le informazioni sulla produzione scientifica dell'Università degli Studi dell’Insubria anche ai fini della valutazione della ricerca.
We apply tilting theory to study modules of finite projective dimension. We introduce the notion of finite and cofinite type for tilting and cotilting classes of modules, respectively, showing that, for each dimension, there is a bijection between these classes and resolving classes of modules.
We then focus on Iwanaga-Gorenstein rings. Using tilting theory, we prove the first finitistic dimension conjecture for these rings. Moreover, we characterize them among noetherian rings by the property that Gorenstein injective modules form a tilting class. Finally, we give an explicit construction of families of (co)tilting modules of (co)finite type for one-dimensional commutative Gorenstein rings
We apply tilting theory to study modules of finite projective dimension. We introduce the notion of finite and cofinite type for tilting and cotilting classes of modules, respectively, showing that, for each dimension, there is a bijection between these classes and resolving classes of modules.
We then focus on Iwanaga-Gorenstein rings. Using tilting theory, we prove the first finitistic dimension conjecture for these rings. Moreover, we characterize them among noetherian rings by the property that Gorenstein injective modules form a tilting class. Finally, we give an explicit construction of families of (co)tilting modules of (co)finite type for one-dimensional commutative Gorenstein rings
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11383/1499760
Citazioni
ND
51
ND
social impact
simulazione ASN
Il report seguente simula gli indicatori relativi alla propria produzione scientifica in relazione alle soglie ASN 2021-2023 del proprio SC/SSD. Si ricorda che il superamento dei valori soglia (almeno 2 su 3) è requisito necessario ma non sufficiente al conseguimento dell'abilitazione. La simulazione si basa sui dati IRIS e sugli indicatori bibliometrici alla data indicata e non tiene conto di eventuali periodi di congedo obbligatorio, che in sede di domanda ASN danno diritto a incrementi percentuali dei valori. La simulazione può differire dall'esito di un’eventuale domanda ASN sia per errori di catalogazione e/o dati mancanti in IRIS, sia per la variabilità dei dati bibliometrici nel tempo. Si consideri che Anvur calcola i valori degli indicatori all'ultima data utile per la presentazione delle domande.
La presente simulazione è stata realizzata sulla base delle specifiche raccolte sul tavolo ER del Focus Group IRIS coordinato dall’Università di Modena e Reggio Emilia e delle regole riportate nel DM 589/2018 e allegata Tabella A. Cineca, l’Università di Modena e Reggio Emilia e il Focus Group IRIS non si assumono alcuna responsabilità in merito all’uso che il diretto interessato o terzi faranno della simulazione. Si specifica inoltre che la simulazione contiene calcoli effettuati con dati e algoritmi di pubblico dominio e deve quindi essere considerata come un mero ausilio al calcolo svolgibile manualmente o con strumenti equivalenti.