In this paper we deal with a Fritz John type constrained vector optimization problem. In spite that there are many concepts of solutions for an unconstrained vector optimization problem, we show the possibility "to double" the number of concepts when a constrained problem is considered. In particular we introduce sense I and sense II isolated minimizers, properly efficient points, efficient points and weakly efficient points. As a motivation leading to these concepts we give some results concerning optimality conditions in constrained vector optimization and stability properties of isolated minimizers and properly efficient points. Our main investigation and results concern relations between sense I and sense II concepts. These relations are proved often under convexity type conditions.
Two approaches toward constrained vector optimization and identity of the solutions
CRESPI GP;GINCHEV I;ROCCA M.
2005-01-01
Abstract
In this paper we deal with a Fritz John type constrained vector optimization problem. In spite that there are many concepts of solutions for an unconstrained vector optimization problem, we show the possibility "to double" the number of concepts when a constrained problem is considered. In particular we introduce sense I and sense II isolated minimizers, properly efficient points, efficient points and weakly efficient points. As a motivation leading to these concepts we give some results concerning optimality conditions in constrained vector optimization and stability properties of isolated minimizers and properly efficient points. Our main investigation and results concern relations between sense I and sense II concepts. These relations are proved often under convexity type conditions.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.