In this paper we develop a dynamic discrete-time bivariate probit model, in which the conditions for Granger non-causality can be represented and tested. The conditions for simultaneous independence are also worked out. The model is extended in order to allow for covariates, representing individual as well as time heterogeneity. The proposed model can be estimated by Maximum Likelihood. Granger non-causality and simultaneous independence can be tested by Likelihood Ratio or Wald tests. A specialized version of the model, aimed at testing Granger non-causality with bivariate discrete-time survival data is also discussed. The proposed tests are illustrated in two empirical applications.
Non-Causality in Bivariate Binary Time Series
SERI, RAFFAELLO
2006-01-01
Abstract
In this paper we develop a dynamic discrete-time bivariate probit model, in which the conditions for Granger non-causality can be represented and tested. The conditions for simultaneous independence are also worked out. The model is extended in order to allow for covariates, representing individual as well as time heterogeneity. The proposed model can be estimated by Maximum Likelihood. Granger non-causality and simultaneous independence can be tested by Likelihood Ratio or Wald tests. A specialized version of the model, aimed at testing Granger non-causality with bivariate discrete-time survival data is also discussed. The proposed tests are illustrated in two empirical applications.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.