The aim of this study was to determine the degradability of 26 Alkylphenols (APs) by Chemical Oxygen Demand (COD) and/or 5-day Biochemical Oxygen Demand (BOD5), and to describe these data from Quantitative Structure-activity Relationships (QSARs). Statistical analysis techniques, such as Multiple Linear Regression (MLR), Principal Component Regression (PCR), Partial Least-Squares (PLS) Regression and Neural Network (NN) were carried out to calibrate and validate four-descriptor QSAR models using two different types of descriptor sets. Stable MLR-QSAR models using Leave-One-Out (LOO) were obtained with high predictability performance: r2 = 0.924, = 0.854 for log (1/BOD) model on 24 APs and r2 = 0.888, = 0.818 for log (1/COD) on all the studied APs. The MLR models, built with four Dragon descriptors selected by Genetic Algorithm (GA), presented the following performances on 24 APs: r2 = 0.889, = 0.848 for log (1/BOD5) and r2 = 0.885, = 0.834 for log (1/COD) on 26 compounds. From these results, it is expected that the QSAR models generated could be successfully expanded to predict the biological and chemical activities of structurally diverse AP compounds

QSAR modeling of water quality indices of alkylphenol pollutants

GRAMATICA, PAOLA;
2007-01-01

Abstract

The aim of this study was to determine the degradability of 26 Alkylphenols (APs) by Chemical Oxygen Demand (COD) and/or 5-day Biochemical Oxygen Demand (BOD5), and to describe these data from Quantitative Structure-activity Relationships (QSARs). Statistical analysis techniques, such as Multiple Linear Regression (MLR), Principal Component Regression (PCR), Partial Least-Squares (PLS) Regression and Neural Network (NN) were carried out to calibrate and validate four-descriptor QSAR models using two different types of descriptor sets. Stable MLR-QSAR models using Leave-One-Out (LOO) were obtained with high predictability performance: r2 = 0.924, = 0.854 for log (1/BOD) model on 24 APs and r2 = 0.888, = 0.818 for log (1/COD) on all the studied APs. The MLR models, built with four Dragon descriptors selected by Genetic Algorithm (GA), presented the following performances on 24 APs: r2 = 0.889, = 0.848 for log (1/BOD5) and r2 = 0.885, = 0.834 for log (1/COD) on 26 compounds. From these results, it is expected that the QSAR models generated could be successfully expanded to predict the biological and chemical activities of structurally diverse AP compounds
2007
Alkylphenols; BOD5; COD; QSAR; MLR
Kim, J. H.; Gramatica, Paola; Kim, M. G.; Kim, D. AND TRATNYEK P. G.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/1668910
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
social impact