The survival of alpine species in changing climates depends on dispersal or adaptation. However, it is unclear whether trait variability along elevation/climatic gradients is adaptive or represents stress towards lower/warmer elevations, particularly for the endangered endemics for which protected status and plant longevity preclude experimental study. We chose one such species, known for its phenotypic variability (Primula glaucescens, endemic to the southern Alps), and quantified key functional traits in situ throughout its range, correlating these with elevation as a proxy for climate. Larger leaves were evident towards lower elevations, but tissue nitrogen dilution and limited regenerative fitness were symptomatic of stress. Specific leaf area, a correlate of relative growth rate, was consistently low: the entire species exhibits conservative leaf economy and inherently slow growth. This seemingly variable species exhibits superficial variability around a fundamentally conservative, cold-adapted survival strategy, and thus phenotypic variability is unlikely to facilitate the persistence of alpine endemics during rapid climate warming.

The survival strategy of the alpine endemic Primula glaucescens is fundamentally unchanged throughout its climate envelope despite superficial phenotypic variability.

CERABOLINI, BRUNO ENRICO LEONE
2009-01-01

Abstract

The survival of alpine species in changing climates depends on dispersal or adaptation. However, it is unclear whether trait variability along elevation/climatic gradients is adaptive or represents stress towards lower/warmer elevations, particularly for the endangered endemics for which protected status and plant longevity preclude experimental study. We chose one such species, known for its phenotypic variability (Primula glaucescens, endemic to the southern Alps), and quantified key functional traits in situ throughout its range, correlating these with elevation as a proxy for climate. Larger leaves were evident towards lower elevations, but tissue nitrogen dilution and limited regenerative fitness were symptomatic of stress. Specific leaf area, a correlate of relative growth rate, was consistently low: the entire species exhibits conservative leaf economy and inherently slow growth. This seemingly variable species exhibits superficial variability around a fundamentally conservative, cold-adapted survival strategy, and thus phenotypic variability is unlikely to facilitate the persistence of alpine endemics during rapid climate warming.
2009
Climate change; Global warming; Habitat fragmentation; Plant functional type; Plant strategy
Ceriani, R. M.; Pierce, S.; Cerabolini, BRUNO ENRICO LEONE
File in questo prodotto:
File Dimensione Formato  
2009 - Plant Ecology, 204 1-10 - The survival strategy of the alpine endemic Primula glaucescens.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: DRM non definito
Dimensione 460.24 kB
Formato Adobe PDF
460.24 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/16714
 Attenzione

L'Ateneo sottopone a validazione solo i file PDF allegati

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 12
social impact