We investigate p-harmonic maps, p ≥ 2, from a complete non-compact manifold into a non-positively curved target. First, we establish a uniqueness result for the p-harmonic representative in the homotopy class of a constant map. Next, we derive a Caccioppoli inequality for the energy density of a p-harmonic map and we prove a companion Liouville type theorem, provided the domain manifold supports a Sobolev–Poincaré inequality. Finally, we obtain energy estimates for a p-harmonic map converging, with a certain speed, to a given point.

Constancy of p-harmonic maps of finite q -energy into non-positively curved manifolds

PIGOLA, STEFANO;SETTI, ALBERTO GIULIO
2008-01-01

Abstract

We investigate p-harmonic maps, p ≥ 2, from a complete non-compact manifold into a non-positively curved target. First, we establish a uniqueness result for the p-harmonic representative in the homotopy class of a constant map. Next, we derive a Caccioppoli inequality for the energy density of a p-harmonic map and we prove a companion Liouville type theorem, provided the domain manifold supports a Sobolev–Poincaré inequality. Finally, we obtain energy estimates for a p-harmonic map converging, with a certain speed, to a given point.
2008
Uniqueness and Liouville theorems - p-Harmonic maps - Energy estimates
Pigola, Stefano; M., Rigoli; Setti, ALBERTO GIULIO
File in questo prodotto:
File Dimensione Formato  
PigolaRigoliSetti_Constancy of p-harmonic maps_Math. Z. (2008).pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: DRM non definito
Dimensione 247.11 kB
Formato Adobe PDF
247.11 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/1671501
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 23
  • ???jsp.display-item.citation.isi??? 22
social impact