Peskun ordering is a partial ordering defined on the space of transition matrices of discrete time Markov chains. If the Markov chains are reversible with respect to a common stationary distribution π, Peskun ordering implies an ordering on the asymptotic variances of the resulting Markov chain Monte Carlo estimators of integrals with respect to π. Peskun ordering is also relevant in the framework of time-invariant estimating equations in that it provides a necessary condition for ordering the asymptotic variances of the resulting estimators. Tierney ordering extends Peskun ordering from finite to general state spaces. In this paper Peskun and Tierney orderings are extended from discrete time to continuous time Markov chains.

An extension of Peskun and Tierney orderings to continuous time Markov chains

LEISEN, FABRIZIO;MIRA, ANTONIETTA
2008-01-01

Abstract

Peskun ordering is a partial ordering defined on the space of transition matrices of discrete time Markov chains. If the Markov chains are reversible with respect to a common stationary distribution π, Peskun ordering implies an ordering on the asymptotic variances of the resulting Markov chain Monte Carlo estimators of integrals with respect to π. Peskun ordering is also relevant in the framework of time-invariant estimating equations in that it provides a necessary condition for ordering the asymptotic variances of the resulting estimators. Tierney ordering extends Peskun ordering from finite to general state spaces. In this paper Peskun and Tierney orderings are extended from discrete time to continuous time Markov chains.
2008
Asymptotic variance; Covariance ordering; Efficiency ordering; MCMC; Time-invariance estimating equations
Leisen, Fabrizio; Mira, Antonietta
File in questo prodotto:
File Dimensione Formato  
A18n422.pdf

accesso aperto

Descrizione: PDF editoriale
Tipologia: Altro materiale allegato
Licenza: Creative commons
Dimensione 148.64 kB
Formato Adobe PDF
148.64 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/1675738
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 14
social impact