The nuclear membrane has an important role for the dynamic regulation of the genome, besides the well-established cytoskeletal function. The nuclear lamina is emerging as an important player in the organization of the position and functional state of interphase chromosomes. Epigenetic modifications such as DNA methylation and histone modifications are required for genome reprogramming during development, tissue-specific gene expression and global gene silencing. The Methyl-CpG binding protein MeCP2 binds methyl-CpG dinucleotides in the mammalian genome and functions as a transcriptional repressor in vivo by interacting with Sin3A, thereby recruiting histone deacetylases (HDAC). MeCP2 also mediates the formation of higher-order chromatin structures contributing to determine the architectural organization of the nucleus. In this paper, we show that MeCP2 interacts in vitro and in vivo with the inner nuclear membrane protein LBR and that the unstructured aminoacidic sequence linking the MBD and TRD domains of MeCP2 is responsible for this association. The formation of an LBR-MeCP2 protein complex might help providing a molecular explanation to the distribution of part of the heterochromatin at the nuclear periphery linked to inner membrane.

Interaction between the Inner Nuclear Membrane Lamin B Receptor and the Heterochromatic Methyl Binding Protein, MeCP2.

BONAPACE, IAN MARC;BADARACCO, GIANFRANCO
2009

Abstract

The nuclear membrane has an important role for the dynamic regulation of the genome, besides the well-established cytoskeletal function. The nuclear lamina is emerging as an important player in the organization of the position and functional state of interphase chromosomes. Epigenetic modifications such as DNA methylation and histone modifications are required for genome reprogramming during development, tissue-specific gene expression and global gene silencing. The Methyl-CpG binding protein MeCP2 binds methyl-CpG dinucleotides in the mammalian genome and functions as a transcriptional repressor in vivo by interacting with Sin3A, thereby recruiting histone deacetylases (HDAC). MeCP2 also mediates the formation of higher-order chromatin structures contributing to determine the architectural organization of the nucleus. In this paper, we show that MeCP2 interacts in vitro and in vivo with the inner nuclear membrane protein LBR and that the unstructured aminoacidic sequence linking the MBD and TRD domains of MeCP2 is responsible for this association. The formation of an LBR-MeCP2 protein complex might help providing a molecular explanation to the distribution of part of the heterochromatin at the nuclear periphery linked to inner membrane.
MeCP2; LBR; nuclear membrane
Guarda, A; Bolognese, F; Bonapace, IAN MARC; Badaracco, Gianfranco
File in questo prodotto:
File Dimensione Formato  
MeCP2 and LBR.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: DRM non definito
Dimensione 522.37 kB
Formato Adobe PDF
522.37 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/1706290
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 53
  • ???jsp.display-item.citation.isi??? 53
social impact