We claim that looking at probability distributions of finite time largest Lyapunov exponents, and more precisely studying their large deviation properties, yields an extremely powerful technique to get quantitative estimates of polynomial decay rates of time correlations and Poincaré recurrences in the-quite-delicate case of dynamical systems with weak chaotic properties.

Instability statistics and mixing rates

ARTUSO, ROBERTO;
2009-01-01

Abstract

We claim that looking at probability distributions of finite time largest Lyapunov exponents, and more precisely studying their large deviation properties, yields an extremely powerful technique to get quantitative estimates of polynomial decay rates of time correlations and Poincaré recurrences in the-quite-delicate case of dynamical systems with weak chaotic properties.
2009
http://journals.aps.org/pre/abstract/10.1103/PhysRevE.80.036210
Artuso, Roberto; Manchein, C.
File in questo prodotto:
File Dimensione Formato  
PhysRevE_80_036210.pdf

accesso aperto

Descrizione: PDF editoriale
Tipologia: Altro materiale allegato
Licenza: Creative commons
Dimensione 200.36 kB
Formato Adobe PDF
200.36 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/1711129
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 33
  • ???jsp.display-item.citation.isi??? 31
social impact