We prove that a map f : M → N with finite p-energy, p > 2, from a complete manifold ( M , ⟨, ⟩) into a non-positively curved, compact manifold N is homotopic to a constant, provided the negative part of the Ricci curvature of the domain manifold is small in a suitable spectral sense. The result relies on a Liouville-type theorem for finite q-energy, p-harmonic maps under spectral assumptions.

On the homotopy class of maps with finite p-energy into non-positively curved manifolds

PIGOLA, STEFANO;
2009-01-01

Abstract

We prove that a map f : M → N with finite p-energy, p > 2, from a complete manifold ( M , ⟨, ⟩) into a non-positively curved, compact manifold N is homotopic to a constant, provided the negative part of the Ricci curvature of the domain manifold is small in a suitable spectral sense. The result relies on a Liouville-type theorem for finite q-energy, p-harmonic maps under spectral assumptions.
2009
Pigola, Stefano; Veronelli, G.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/1715298
 Attenzione

L'Ateneo sottopone a validazione solo i file PDF allegati

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 12
social impact