Human serum albumin (HSA), the most prominent protein in plasma, binds different classes of ligands at multiple sites. The globular domain structural organization of monomeric HSA is at the root of its allosteric properties which are reminiscent of those of multimeric proteins. Here, both functional and structural aspects of the allosteric modulation of heme and drug (e.g., warfarin and ibuprofen) binding to HSA and of the drug-dependent reactivity of HSA-heme are reviewed.

Allostery in a monomeric protein: the case of human serum albumin.

FASANO, MAURO
2010-01-01

Abstract

Human serum albumin (HSA), the most prominent protein in plasma, binds different classes of ligands at multiple sites. The globular domain structural organization of monomeric HSA is at the root of its allosteric properties which are reminiscent of those of multimeric proteins. Here, both functional and structural aspects of the allosteric modulation of heme and drug (e.g., warfarin and ibuprofen) binding to HSA and of the drug-dependent reactivity of HSA-heme are reviewed.
2010
http://dx.doi.org/10.1016/j.bpc.2010.03.001
P., Ascenzi; Fasano, Mauro
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/1717096
Citazioni
  • ???jsp.display-item.citation.pmc??? 41
  • Scopus 168
  • ???jsp.display-item.citation.isi??? 164
social impact