Human serum albumin (HSA) participates in heme scavenging; in turn, heme endows HSA with myoglobin-like reactivity and spectroscopic properties. Here, the allosteric effect of ibuprofen on peroxynitrite isomerization to NO(3)(-) catalyzed by ferric human serum heme-albumin (HSA-heme-Fe(III)) is reported. Data were obtained at 22.0 degrees C. HSA-heme-Fe(III) catalyzes peroxynitrite isomerization in the absence and presence of CO(2); the values of the second order catalytic rate constant (k(on)) are 4.1 x 10(5) and 4.5 x 10(5) m(-1) s(-1), respectively. Moreover, HSA-heme-Fe(III) prevents peroxynitrite-mediated nitration of free added l-tyrosine. The pH dependence of k(on) (pK(a) = 6.9) suggests that peroxynitrous acid reacts preferentially with the heme-Fe(III) atom, in the absence and presence of CO(2). The HSA-heme-Fe(III)-catalyzed isomerization of peroxynitrite has been ascribed to the reactive pentacoordinated heme-Fe(III) atom. In the absence and presence of CO(2), ibuprofen impairs dose-dependently peroxynitrite isomerization by HSA-heme-Fe(III) and facilitates the nitration of free added l-tyrosine; the value of the dissociation equilibrium constant for ibuprofen binding to HSA-heme-Fe(III) (L) ranges between 7.7 x 10(-4) and 9.7 x 10(-4) m. Under conditions where [ibuprofen] is >L, the kinetics of HSA-heme-Fe(III)-catalyzed isomerization of peroxynitrite is superimposable to that obtained in the absence of HSA-heme-Fe(III) or in the presence of non-catalytic HSA-heme-Fe(III)-cyanide complex and HSA. Ibuprofen binding impairs allosterically peroxynitrite isomerization by HSA-heme-Fe(III), inducing the hexacoordination of the heme-Fe(III) atom. These results represent the first evidence for peroxynitrite isomerization by HSA-heme-Fe(III), highlighting the allosteric modulation of HSA-heme-Fe(III) reactivity by heterotropic interaction(s), and outlining the role of drugs in modulating HSA functions. The present results could be relevant for the drug-dependent protective role of HSA-heme-Fe(III) in vivo.
Ibuprofen impairs allosterically peroxynitrite isomerization by ferric human serum heme-albumin.
FANALI, GABRIELLA;FASANO, MAURO
2009-01-01
Abstract
Human serum albumin (HSA) participates in heme scavenging; in turn, heme endows HSA with myoglobin-like reactivity and spectroscopic properties. Here, the allosteric effect of ibuprofen on peroxynitrite isomerization to NO(3)(-) catalyzed by ferric human serum heme-albumin (HSA-heme-Fe(III)) is reported. Data were obtained at 22.0 degrees C. HSA-heme-Fe(III) catalyzes peroxynitrite isomerization in the absence and presence of CO(2); the values of the second order catalytic rate constant (k(on)) are 4.1 x 10(5) and 4.5 x 10(5) m(-1) s(-1), respectively. Moreover, HSA-heme-Fe(III) prevents peroxynitrite-mediated nitration of free added l-tyrosine. The pH dependence of k(on) (pK(a) = 6.9) suggests that peroxynitrous acid reacts preferentially with the heme-Fe(III) atom, in the absence and presence of CO(2). The HSA-heme-Fe(III)-catalyzed isomerization of peroxynitrite has been ascribed to the reactive pentacoordinated heme-Fe(III) atom. In the absence and presence of CO(2), ibuprofen impairs dose-dependently peroxynitrite isomerization by HSA-heme-Fe(III) and facilitates the nitration of free added l-tyrosine; the value of the dissociation equilibrium constant for ibuprofen binding to HSA-heme-Fe(III) (L) ranges between 7.7 x 10(-4) and 9.7 x 10(-4) m. Under conditions where [ibuprofen] is >L, the kinetics of HSA-heme-Fe(III)-catalyzed isomerization of peroxynitrite is superimposable to that obtained in the absence of HSA-heme-Fe(III) or in the presence of non-catalytic HSA-heme-Fe(III)-cyanide complex and HSA. Ibuprofen binding impairs allosterically peroxynitrite isomerization by HSA-heme-Fe(III), inducing the hexacoordination of the heme-Fe(III) atom. These results represent the first evidence for peroxynitrite isomerization by HSA-heme-Fe(III), highlighting the allosteric modulation of HSA-heme-Fe(III) reactivity by heterotropic interaction(s), and outlining the role of drugs in modulating HSA functions. The present results could be relevant for the drug-dependent protective role of HSA-heme-Fe(III) in vivo.File | Dimensione | Formato | |
---|---|---|---|
31006.full.pdf
accesso aperto
Descrizione: PDF editoriale
Tipologia:
Altro materiale allegato
Licenza:
Creative commons
Dimensione
2 MB
Formato
Adobe PDF
|
2 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.