Inappropriate activation of the IGF (insulin-like growth factor) system has been implicated in the growth and progression of a number of tumor types. Recent evidence indicates a possible role for the IGF system in modulating/mediating tumor cell response to hypoxia, a common occurrence in solid tumors, and particularly in malignant gliomas, causing tumor cells either to die, or to mount a pleiotropic adaptive response that is mainly orchestrated through activation of the hypoxia-inducible transcription factor HIF1. Experimental evidence suggests possible links between IGF- and HIF1-dependent signaling pathways, as well as a role for activated STAT3 in mediating their activities. Interestingly, igf2 is among the target genes transactivated by HIF1, thereby providing the missing link in a hypothetical autocrine self-amplifying circuit. The present study investigates the presence of the IGF-HIF1-VEGF axis in the human glioma cell line U-87 MG, and characterizes its molecular effectors. Our results show that exogenous IGF-I causes IGF1R and STAT3 activation, and increases HIF1α protein levels and HIF1 trascriptional activity, inducing VEGF release; a similar response, mediated by IGF-II release, is observed following HIF1α stabilization. The existence of an autocrine loop is confirmed by its down-regulation following inactivation of IGF1R (using the IGF1R-specific tyrosine kinase inhibitor NVP-AEW541), STAT3 (transfecting the cells with an expression vector encoding a dominant negative form of STAT3), or HIF1 (using the small molecule inhibitor YC-1). The ability of NVP-AEW541 to block this circuit could be beneficial in suppressing the growth and angiogenic potential of hypoxic glial tumors.

THE IGFR1 INHIBITOR NVP-AEW541 DISRUPTS A PRO-SURVIVAL AND PRO-ANGIOGENIC IGF-STAT3-HIF1 PATHWAY IN HUMAN GLIOBLASTOMA CELLS.

GARIBOLDI, MARZIA BRUNA;RAVIZZA, RAFFAELLA;MONTI, ELENA CATERINA
2010-01-01

Abstract

Inappropriate activation of the IGF (insulin-like growth factor) system has been implicated in the growth and progression of a number of tumor types. Recent evidence indicates a possible role for the IGF system in modulating/mediating tumor cell response to hypoxia, a common occurrence in solid tumors, and particularly in malignant gliomas, causing tumor cells either to die, or to mount a pleiotropic adaptive response that is mainly orchestrated through activation of the hypoxia-inducible transcription factor HIF1. Experimental evidence suggests possible links between IGF- and HIF1-dependent signaling pathways, as well as a role for activated STAT3 in mediating their activities. Interestingly, igf2 is among the target genes transactivated by HIF1, thereby providing the missing link in a hypothetical autocrine self-amplifying circuit. The present study investigates the presence of the IGF-HIF1-VEGF axis in the human glioma cell line U-87 MG, and characterizes its molecular effectors. Our results show that exogenous IGF-I causes IGF1R and STAT3 activation, and increases HIF1α protein levels and HIF1 trascriptional activity, inducing VEGF release; a similar response, mediated by IGF-II release, is observed following HIF1α stabilization. The existence of an autocrine loop is confirmed by its down-regulation following inactivation of IGF1R (using the IGF1R-specific tyrosine kinase inhibitor NVP-AEW541), STAT3 (transfecting the cells with an expression vector encoding a dominant negative form of STAT3), or HIF1 (using the small molecule inhibitor YC-1). The ability of NVP-AEW541 to block this circuit could be beneficial in suppressing the growth and angiogenic potential of hypoxic glial tumors.
2010
Gariboldi, MARZIA BRUNA; Ravizza, Raffaella; Monti, ELENA CATERINA
File in questo prodotto:
File Dimensione Formato  
Biochem Pharmacol 2010.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: DRM non definito
Dimensione 397.39 kB
Formato Adobe PDF
397.39 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/1717290
 Attenzione

L'Ateneo sottopone a validazione solo i file PDF allegati

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 68
  • ???jsp.display-item.citation.isi??? 60
social impact