Using the general recipe given in arXiv:0804.0009, where all timelike supersymmetric solutions of N = 2, D = 4 gauged supergravity coupled to abelian vector multiplets were classified, we construct the first examples of genuine supersymmetric black holes in AdS4 with nonconstant scalar fields. This is done for various choices of the prepotential, amongst others for the STU model. These solutions permit to study the BPS attractor flow in AdS. We also determine the most general supersymmetric static near-horizon geometry and obtain the attractor equations in gauged supergravity. As a general feature we find the presence of flat directions in the black hole potential, i.e., generically the values of the moduli on the horizon are not completely specified by the charges. For one of the considered prepotentials, the resulting moduli space is determined explicitely. Still, in all cases, we find that the black hole entropy depends only on the charges, in agreement with the attractor mechanism.
Supersymmetric AdS(4) black holes and attractors
CACCIATORI, SERGIO LUIGI
;
2010-01-01
Abstract
Using the general recipe given in arXiv:0804.0009, where all timelike supersymmetric solutions of N = 2, D = 4 gauged supergravity coupled to abelian vector multiplets were classified, we construct the first examples of genuine supersymmetric black holes in AdS4 with nonconstant scalar fields. This is done for various choices of the prepotential, amongst others for the STU model. These solutions permit to study the BPS attractor flow in AdS. We also determine the most general supersymmetric static near-horizon geometry and obtain the attractor equations in gauged supergravity. As a general feature we find the presence of flat directions in the black hole potential, i.e., generically the values of the moduli on the horizon are not completely specified by the charges. For one of the considered prepotentials, the resulting moduli space is determined explicitely. Still, in all cases, we find that the black hole entropy depends only on the charges, in agreement with the attractor mechanism.File | Dimensione | Formato | |
---|---|---|---|
me-JHEP-2010.pdf
non disponibili
Tipologia:
Versione Editoriale (PDF)
Licenza:
Copyright dell'editore
Dimensione
661.81 kB
Formato
Adobe PDF
|
661.81 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.