Dietary flavonoid may have beneficial effects in the prevention of chronic diseases. However, flavonoid bioavailability is often poor probably due to their interaction with plasma proteins. Here, the affinity of daidzein and daidzein metabolites as well as of genistein, naringenin, and quercetin for human serum albumin (HSA) has been assessed in the absence and presence of oleate. Values of the dissociation equilibrium constant (K) for binding of flavonoids and related metabolites to Sudlow's site I range between 3.3x10(-6) and 3.9x10(-5)M, at pH 7.0 and 20.0 degrees C, indicating that these flavonoids are mainly bound to HSA in vivo. Values of K increase (i.e., the flavonoid affinity decreases) in the presence of saturating amounts of oleate by about two folds. Present data indicate a novel role of fatty acids as allosteric inhibitors of flavonoid bioavailability, and appear to be relevant in rationalizing the interference between dietary compounds, food supplements, and drugs.

Flavonoid binding to human serum albumin.

FANALI, GABRIELLA;FASANO, MAURO;
2010-01-01

Abstract

Dietary flavonoid may have beneficial effects in the prevention of chronic diseases. However, flavonoid bioavailability is often poor probably due to their interaction with plasma proteins. Here, the affinity of daidzein and daidzein metabolites as well as of genistein, naringenin, and quercetin for human serum albumin (HSA) has been assessed in the absence and presence of oleate. Values of the dissociation equilibrium constant (K) for binding of flavonoids and related metabolites to Sudlow's site I range between 3.3x10(-6) and 3.9x10(-5)M, at pH 7.0 and 20.0 degrees C, indicating that these flavonoids are mainly bound to HSA in vivo. Values of K increase (i.e., the flavonoid affinity decreases) in the presence of saturating amounts of oleate by about two folds. Present data indicate a novel role of fatty acids as allosteric inhibitors of flavonoid bioavailability, and appear to be relevant in rationalizing the interference between dietary compounds, food supplements, and drugs.
2010
http://dx.doi.org/10.1016/j.bbrc.2010.06.096
Biological Availability; Diet; Flavanones; Flavonoids; Genistein; Humans; Isoflavones; Oleic Acid; Protein Binding; Protein Conformation; Quercetin; Serum Albumin
A., Bolli; M., Marino; G., Rimbach; Fanali, Gabriella; Fasano, Mauro; P., Ascenzi
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/1718473
Citazioni
  • ???jsp.display-item.citation.pmc??? 21
  • Scopus 110
  • ???jsp.display-item.citation.isi??? 105
social impact