Accurate quantitative structure–property relationship (QSPR) models based on a large data set containing a total of 3483 organic compounds were developed to predict chemicals’ adsorption capability onto activated carbon in gas phrase. Both global multiple linear regression (MLR) method and local lazy regression (LLR) method were used to develop QSPR models. The results proved that LLR has prediction accuracy 10% higher than that of MLR model. By applying LLR method we can predict the test set (787 compounds) with Q2ext of 0.900 and root mean square error (RMSE) of 0.129. The accurate model based on this large data set could be useful to predict adsorption property of new compounds since such model covers a highly diverse structural space.

Prediction of the adsorption capability onto activated carbon of a large data set of chemicals by local lazy regession method

GRAMATICA, PAOLA
2010-01-01

Abstract

Accurate quantitative structure–property relationship (QSPR) models based on a large data set containing a total of 3483 organic compounds were developed to predict chemicals’ adsorption capability onto activated carbon in gas phrase. Both global multiple linear regression (MLR) method and local lazy regression (LLR) method were used to develop QSPR models. The results proved that LLR has prediction accuracy 10% higher than that of MLR model. By applying LLR method we can predict the test set (787 compounds) with Q2ext of 0.900 and root mean square error (RMSE) of 0.129. The accurate model based on this large data set could be useful to predict adsorption property of new compounds since such model covers a highly diverse structural space.
2010
Activated carbon adsorption capability; Quantitative structure–property relationship (QSPR); Genetic algorithm (GA); Local lazy regression (LLR)
Beilei, Lei; Yimeng, Ma; Jiazhong, Li; Huanxiang, Liu; Xiaojun, Yao; Gramatica, Paola
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/1718844
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 20
social impact