Serra-Capizzano recently introduced anti-reflecting boundary conditions (AR-BC) for blurring models: the idea seems promising both from the computational and approximation viewpoint. The key point is that, under certain symmetry conditions, the AR-BC matrices can be essentially simultaneously diagonalized by the (fast) sine transform DST I and, moreover, a C1 continuity at the border is guaranteed in the 1D case. Here we give more details for the 2D case and we perform extensive numerical simulations which illustrate that the AR-BC can be superior to Dirichlet, periodic and reflective BCs in certain applications.
Anti-reflective boundary conditions and fast 2D deblurring models
DONATELLI, MARCO;SERRA CAPIZZANO, STEFANO
2003-01-01
Abstract
Serra-Capizzano recently introduced anti-reflecting boundary conditions (AR-BC) for blurring models: the idea seems promising both from the computational and approximation viewpoint. The key point is that, under certain symmetry conditions, the AR-BC matrices can be essentially simultaneously diagonalized by the (fast) sine transform DST I and, moreover, a C1 continuity at the border is guaranteed in the 1D case. Here we give more details for the 2D case and we perform extensive numerical simulations which illustrate that the AR-BC can be superior to Dirichlet, periodic and reflective BCs in certain applications.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.