Weconsidercompletemanifoldswithasymptoticallynon-negative curvature which enjoy a Euclidean-type Sobolev inequality and we get an ex- plicit lower control on the volume of geodesic balls. In case the amount of negative curvature is small and the Sobolev constant is almost optimal, we deduce that the manifold is diffeomorphic to Euclidean space. This extends previous results by M. Ledoux and C. Xia.

Lower volume estimates and Sobolev inequalities

PIGOLA, STEFANO;
2010-01-01

Abstract

Weconsidercompletemanifoldswithasymptoticallynon-negative curvature which enjoy a Euclidean-type Sobolev inequality and we get an ex- plicit lower control on the volume of geodesic balls. In case the amount of negative curvature is small and the Sobolev constant is almost optimal, we deduce that the manifold is diffeomorphic to Euclidean space. This extends previous results by M. Ledoux and C. Xia.
2010
Pigola, Stefano; Veronelli, G.
File in questo prodotto:
File Dimensione Formato  
PigolaVeronelli_SobolevRigidityTheorem_PAMS(2010).pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: DRM non definito
Dimensione 439.2 kB
Formato Adobe PDF
439.2 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/1719935
 Attenzione

L'Ateneo sottopone a validazione solo i file PDF allegati

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
social impact