In recent works several authors have proposed the use of precise boundary conditions (BCs) for blurring models, and they proved that the resulting choice (Neumann or reflective, antireflective) leads to fast algorithms both for deblurring and for detecting the regularization parameters in presence of noise. When considering a symmetric point spread function, the crucial fact is that such BCs are related to fast trigonometric transforms. In this paper we combine the use of precise BCs with the total variation (TV) approach in order to preserve the jumps of the given signal (edges of the given image) as much as possible. We consider a classic fixed point method with a preconditioned Krylov method (usually the conjugate gradient method) for the inner iteration. Based on fast trigonometric transforms, we propose some preconditioning strategies that are suitable for reflective and antireflective BCs. A theoretical analysis motivates the choice of our preconditioners, and an extensive numerical experimentation is reported and critically discussed. Numerical tests show that the TV regularization with antireflective BCs implies not only a reduced analytical error, but also a lower computational cost of the whole restoration procedure over the other BCs.

Fast preconditioners for total variation deblurring with antireflective boundary conditions

DONATELLI, MARCO;SERRA CAPIZZANO, STEFANO
2011-01-01

Abstract

In recent works several authors have proposed the use of precise boundary conditions (BCs) for blurring models, and they proved that the resulting choice (Neumann or reflective, antireflective) leads to fast algorithms both for deblurring and for detecting the regularization parameters in presence of noise. When considering a symmetric point spread function, the crucial fact is that such BCs are related to fast trigonometric transforms. In this paper we combine the use of precise BCs with the total variation (TV) approach in order to preserve the jumps of the given signal (edges of the given image) as much as possible. We consider a classic fixed point method with a preconditioned Krylov method (usually the conjugate gradient method) for the inner iteration. Based on fast trigonometric transforms, we propose some preconditioning strategies that are suitable for reflective and antireflective BCs. A theoretical analysis motivates the choice of our preconditioners, and an extensive numerical experimentation is reported and critically discussed. Numerical tests show that the TV regularization with antireflective BCs implies not only a reduced analytical error, but also a lower computational cost of the whole restoration procedure over the other BCs.
2011
Sine algebra of type I (tau algebra); reflective and antireflective BCs; total variation; preconditioning
Bai, Z. J.; Donatelli, Marco; SERRA CAPIZZANO, Stefano
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/1730201
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 6
social impact