Multiple neural network systems have become popular techniques for tackling complex tasks, often giving improved performance compared to a single network. In this study we propose an innovative detection algorithm in image analysis using a multiple neural network approach where many neural networks are jointly used to solve the object detection problem. We use a group of networks configured with different parameters and features, then combines them in order to obtain new networks. The topology of the set of neural networks is statically configured as a tree where the root node produces in output the detection map. This work represents a preliminary study through which we want to move from detection to segmentation and recognition of objects of interest. We have compared our model with other detection algorithms using a standard dataset and the results are encouraging. The results highlight the advantages and problems that will guide the evolution of the proposed model.

Multiple neural network systems have become popular techniques for tackling complex tasks, often giving improved performance compared to a single network. In this study we propose an innovative detection algorithm in image analysis using a multiple neural network approach where many neural networks are jointly used to solve the object detection problem. We use a group of networks configured with different parameters and features, then combines them in order to obtain new networks. The topology of the set of neural networks is statically configured as a tree where the root node produces in output the detection map. This work represents a preliminary study through which we want to move from detection to segmentation and recognition of objects of interest. We have compared our model with other detection algorithms using a standard dataset and the results are encouraging. The results highlight the advantages and problems that will guide the evolution of the proposed model.

Learning Object Detection using Multiple Neural Netwoks

GALLO, IGNAZIO;
2011-01-01

Abstract

Multiple neural network systems have become popular techniques for tackling complex tasks, often giving improved performance compared to a single network. In this study we propose an innovative detection algorithm in image analysis using a multiple neural network approach where many neural networks are jointly used to solve the object detection problem. We use a group of networks configured with different parameters and features, then combines them in order to obtain new networks. The topology of the set of neural networks is statically configured as a tree where the root node produces in output the detection map. This work represents a preliminary study through which we want to move from detection to segmentation and recognition of objects of interest. We have compared our model with other detection algorithms using a standard dataset and the results are encouraging. The results highlight the advantages and problems that will guide the evolution of the proposed model.
2011
Proceedings of International Conference on Computer Vision Theory and Applications (VISAPP)
International Conference on Computer Vision Theory and Applications (VISAPP)
Vilamoura - Algarve, Portugal
5-7 March 2011
Multiple neural network systems have become popular techniques for tackling complex tasks, often giving improved performance compared to a single network. In this study we propose an innovative detection algorithm in image analysis using a multiple neural network approach where many neural networks are jointly used to solve the object detection problem. We use a group of networks configured with different parameters and features, then combines them in order to obtain new networks. The topology of the set of neural networks is statically configured as a tree where the root node produces in output the detection map. This work represents a preliminary study through which we want to move from detection to segmentation and recognition of objects of interest. We have compared our model with other detection algorithms using a standard dataset and the results are encouraging. The results highlight the advantages and problems that will guide the evolution of the proposed model.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/1730377
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? ND
social impact