The role of intracellular ions on the reverse GABA transport by the neuronal transporter GAT1 was studied using voltage-clamp and [(3)H]GABA efflux determinations in Xenopus oocytes transfected with heterologous mRNA. Reverse transport was induced by intracellular GABA injections and measured in terms of the net outward current generated by the transporter. Changes in various intracellular ionic conditions affected the reverse current: higher concentrations of Na(+) enhanced the ratio of outward over inward transport current, while a considerable decrease of the outward current and a parallel reduction of the transporter-mediated GABA efflux were observed after treatments causing a diminution of the intracellular Cl(-) concentration. Particularly interesting was the impairment of the reverse transport observed after depletion of internal Cl(-) generated by the activity of a coexpressed K(+)-Cl(-) exporter KCC2. This finding suggests that reverse GABA transport may be physiologically regulated during early neuronal development, similarly to the functional alterations seen in GABA receptors caused by KCC2 activity.

GABA reverse transport by the neuronal cotransporter GAT1: influence of internal chloride depletion.

BOSSI, ELENA;
2011

Abstract

The role of intracellular ions on the reverse GABA transport by the neuronal transporter GAT1 was studied using voltage-clamp and [(3)H]GABA efflux determinations in Xenopus oocytes transfected with heterologous mRNA. Reverse transport was induced by intracellular GABA injections and measured in terms of the net outward current generated by the transporter. Changes in various intracellular ionic conditions affected the reverse current: higher concentrations of Na(+) enhanced the ratio of outward over inward transport current, while a considerable decrease of the outward current and a parallel reduction of the transporter-mediated GABA efflux were observed after treatments causing a diminution of the intracellular Cl(-) concentration. Particularly interesting was the impairment of the reverse transport observed after depletion of internal Cl(-) generated by the activity of a coexpressed K(+)-Cl(-) exporter KCC2. This finding suggests that reverse GABA transport may be physiologically regulated during early neuronal development, similarly to the functional alterations seen in GABA receptors caused by KCC2 activity.
XENOPUS-OOCYTE-MEMBRANE, NEUROTRANSMITTER TRANSPORTERS, CL-COTRANSPORTER, ION-BINDING, TRANSPORT MECHANISM, WATER, TRANSIENT CURRENTS,
File in questo prodotto:
File Dimensione Formato  
2011_AJP_301_5_C1064.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: DRM non definito
Dimensione 667.97 kB
Formato Adobe PDF
667.97 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11383/1730384
Citazioni
  • ???jsp.display-item.citation.pmc??? 6
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 9
social impact