An analytical model has been developed to describe the interaction between rigid ammonia molecules including the explicit description of induction. The parameters of the model potential were chosen by fitting high quality ab initio data obtained using second-order Moller-Plesset (MP2) perturbation theory and extended basis sets. The description of polarization effects is introduced by using a noniterative form of the "charge on spring model", the latter accounting for more than 95% of the dipole induction energy and of the increased molecular dipole. Putative global minima for (NH3)(n) (n = 3-20) have been optimized using this new model, the structure and energetics of the clusters with n = 3-5 being found in good agreement with previous ab initio results including electronic correlation. Results for larger species have been compared with previous structural studies where only nonpolarizable models were employed. Our model predicts larger binding energies for any cluster size than previous analytical surfaces, the results often suggesting a reorganization of the relative energy ranking and a different structure for the global minimum.
Structure and energetics of ammonia clusters (NH3)n (n=3-20) investigated using a rigid-polarizable model derived from ab initio calculations
MELLA, MASSIMO;
2008-01-01
Abstract
An analytical model has been developed to describe the interaction between rigid ammonia molecules including the explicit description of induction. The parameters of the model potential were chosen by fitting high quality ab initio data obtained using second-order Moller-Plesset (MP2) perturbation theory and extended basis sets. The description of polarization effects is introduced by using a noniterative form of the "charge on spring model", the latter accounting for more than 95% of the dipole induction energy and of the increased molecular dipole. Putative global minima for (NH3)(n) (n = 3-20) have been optimized using this new model, the structure and energetics of the clusters with n = 3-5 being found in good agreement with previous ab initio results including electronic correlation. Results for larger species have been compared with previous structural studies where only nonpolarizable models were employed. Our model predicts larger binding energies for any cluster size than previous analytical surfaces, the results often suggesting a reorganization of the relative energy ranking and a different structure for the global minimum.File | Dimensione | Formato | |
---|---|---|---|
PES_ammonia.pdf
non disponibili
Descrizione: PDF editoriale
Tipologia:
Altro materiale allegato
Licenza:
DRM non definito
Dimensione
527.61 kB
Formato
Adobe PDF
|
527.61 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
s1-ln3181862079244751-1939656818Hwf-1319968073IdV-813315104318186PDF_HI0001.pdf
accesso aperto
Descrizione: Post-print
Tipologia:
Documento in Post-print
Licenza:
Creative commons
Dimensione
3.15 MB
Formato
Adobe PDF
|
3.15 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.