The dynamics of the isotopic scrambling in the energized and metastable complex D2O-H3O+ has been studied using classical molecular dynamics (MD) trajectories starting from regions of phase space corresponding to an already formed collisional complex. The simulations cover the range of internal energies spanned by gas phase collision experiments. Rate constants for the isotopic exchange and the complex dissociation have been computed; the isotopic branching ratio R=[HD2O+]/[H2DO+] has also been obtained from MD simulations and found to deviate substantially from an equivalent prediction based on a previously proposed kinetic scheme. This finding suggests the possibility that details of the reaction dynamics play a role in defining the isotopic branching ratio. The analysis of trajectory results indicated a relatively long lifetime for the collisional complex and the presence of multiple time scales for the exchange process, with a large fraction of the exchange events being separated only by a single oxygen-oxygen vibration or half of it. The occurrence of these fast consecutive jumps and their different probabilities as a function of the relative direction between first and second jumps suggest the presence of ballistic motion in the complex following each reactive event. This can be explained on the basis of overlapping regions in phase space and it is used to provide an explanation of the difference between kinetic and MD branching ratios. (c) 2007 American Institute of Physics.
Macroscopic evidences for non-Rice-Ramsperger-Kassel effects in the reaction between H3O+ and D2O: The occurrence of nonstatistical isotopic branching ratio
MELLA, MASSIMO
2007-01-01
Abstract
The dynamics of the isotopic scrambling in the energized and metastable complex D2O-H3O+ has been studied using classical molecular dynamics (MD) trajectories starting from regions of phase space corresponding to an already formed collisional complex. The simulations cover the range of internal energies spanned by gas phase collision experiments. Rate constants for the isotopic exchange and the complex dissociation have been computed; the isotopic branching ratio R=[HD2O+]/[H2DO+] has also been obtained from MD simulations and found to deviate substantially from an equivalent prediction based on a previously proposed kinetic scheme. This finding suggests the possibility that details of the reaction dynamics play a role in defining the isotopic branching ratio. The analysis of trajectory results indicated a relatively long lifetime for the collisional complex and the presence of multiple time scales for the exchange process, with a large fraction of the exchange events being separated only by a single oxygen-oxygen vibration or half of it. The occurrence of these fast consecutive jumps and their different probabilities as a function of the relative direction between first and second jumps suggest the presence of ballistic motion in the complex following each reactive event. This can be explained on the basis of overlapping regions in phase space and it is used to provide an explanation of the difference between kinetic and MD branching ratios. (c) 2007 American Institute of Physics.File | Dimensione | Formato | |
---|---|---|---|
Zundel_nonstat_scrambling.pdf
accesso aperto
Descrizione: PDF editoriale
Tipologia:
Altro materiale allegato
Licenza:
Creative commons
Dimensione
759.18 kB
Formato
Adobe PDF
|
759.18 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.