The goat is a widely used animal model for basic research on the anterior cruciate ligament (ACL), but the biomechanical role of the different bundles [intermediate (IM), anteromedial (AM), posterolateral (PL)] of the ACL is unclear. Therefore, the aim of this study is to describe the biomechanical function of the different bundles and evaluate its use for a double bundle ACL reconstruction model. A CASPAR Stäubli RX90 robot with a six degree-of-freedom load cell was used for measurement of anterior tibial translation (ATT) (mm) and in situ forces (N) at 30 degrees (full extension), 60 degrees , 90 degrees as well as rotational testing at 30 degrees in 14 paired goat knees before and after each bundle was cut. When the AM-bundle was cut, the ATT increased significantly at 60 degrees and 90 degrees of flexion (p < 0.05). When the PL-bundle was cut, the ATT increased only at 30 degrees. However, most load was transferred through the big AM-bundle while the PL-bundle shared significant load only at 30 degrees, with only minimal contribution from the IM-bundle at all flexion degrees. The observed biomechanical results in this study are similar to the human ACL observed previously in the literature. Though anatomically discernible, the IM-bundle plays only an inferior role in ATT and might be neglected as a separate bundle during reconstruction. The goat ACL shows some differences to the human ACL, whereas the main functions of the ACL bundles are similar.

Biomechanics of the goat three bundle anterior cruciate ligament

RONGA, MARIO;
2009-01-01

Abstract

The goat is a widely used animal model for basic research on the anterior cruciate ligament (ACL), but the biomechanical role of the different bundles [intermediate (IM), anteromedial (AM), posterolateral (PL)] of the ACL is unclear. Therefore, the aim of this study is to describe the biomechanical function of the different bundles and evaluate its use for a double bundle ACL reconstruction model. A CASPAR Stäubli RX90 robot with a six degree-of-freedom load cell was used for measurement of anterior tibial translation (ATT) (mm) and in situ forces (N) at 30 degrees (full extension), 60 degrees , 90 degrees as well as rotational testing at 30 degrees in 14 paired goat knees before and after each bundle was cut. When the AM-bundle was cut, the ATT increased significantly at 60 degrees and 90 degrees of flexion (p < 0.05). When the PL-bundle was cut, the ATT increased only at 30 degrees. However, most load was transferred through the big AM-bundle while the PL-bundle shared significant load only at 30 degrees, with only minimal contribution from the IM-bundle at all flexion degrees. The observed biomechanical results in this study are similar to the human ACL observed previously in the literature. Though anatomically discernible, the IM-bundle plays only an inferior role in ATT and might be neglected as a separate bundle during reconstruction. The goat ACL shows some differences to the human ACL, whereas the main functions of the ACL bundles are similar.
2009
Biomechanics, Anterior cruciate ligament, Animal model, Goat, Caprine, Double bundle
Tischer, T.; Ronga, Mario; Tsai, A.; Ingham, S. J.; Ekdahl, M.; Smolinski, P.; Fu, F. H.
File in questo prodotto:
File Dimensione Formato  
Knee_2009.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: DRM non definito
Dimensione 228.47 kB
Formato Adobe PDF
228.47 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/1746431
 Attenzione

L'Ateneo sottopone a validazione solo i file PDF allegati

Citazioni
  • ???jsp.display-item.citation.pmc??? 8
  • Scopus 29
  • ???jsp.display-item.citation.isi??? 26
social impact