Extending the longitudinal range of plasma channels created by ultrashort laser pulses in atmosphere is important in practical applications of laser-induced plasma such as remote spectroscopy and lightning control. Weakly focused femtosecond Gaussian beams that are commonly used for generating plasma channels offer only a limited control of filamentation. Increasing the pulse energy in this case typically results in creation of multiple filaments and does not appreciably extend the longitudinal range of filamentation. Bessel beams with their extended linear foci intuitively appear to be better suited for generation of long plasma channels. We report experimental results on creating extended filaments in air using femtosecond Bessel beams. By probing the linear plasma density along the filament, we show that apertured Bessel beams produce stable single plasma channels that span the entire extent of the linear focus of the beam. We further show that by temporally chirping the pulse, the plasma channel can be longitudinally shifted beyond the linear-focus zone, an important effect that may potentially offer additional means of controlling filament formation

Generation of extended plasma channels in air using femtosecond Bessel beams

DI TRAPANI, PAOLO;
2008-01-01

Abstract

Extending the longitudinal range of plasma channels created by ultrashort laser pulses in atmosphere is important in practical applications of laser-induced plasma such as remote spectroscopy and lightning control. Weakly focused femtosecond Gaussian beams that are commonly used for generating plasma channels offer only a limited control of filamentation. Increasing the pulse energy in this case typically results in creation of multiple filaments and does not appreciably extend the longitudinal range of filamentation. Bessel beams with their extended linear foci intuitively appear to be better suited for generation of long plasma channels. We report experimental results on creating extended filaments in air using femtosecond Bessel beams. By probing the linear plasma density along the filament, we show that apertured Bessel beams produce stable single plasma channels that span the entire extent of the linear focus of the beam. We further show that by temporally chirping the pulse, the plasma channel can be longitudinally shifted beyond the linear-focus zone, an important effect that may potentially offer additional means of controlling filament formation
2008
Nonlinear optics; Bessel beams; Conical waves; Light filaments; plasma channels
Polynkin, P.; Kolesik, M.; Roberts, A.; Faccio, D.; DI TRAPANI, Paolo; Moloney, J.
File in questo prodotto:
File Dimensione Formato  
BB filaments.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: DRM non definito
Dimensione 226.15 kB
Formato Adobe PDF
226.15 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/1746488
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 109
social impact