To better understand the mechanism of intracellular Ca2+ mobilization, mouse oocytes were micro-injected with 'caged'-inositol-1,4,5 triphosphate caged-InsP3) together with the Ca2+ indicator Fluo-3 to directly induce and monitor Ca2+ redistribution. Photo-released InsP3 elicits [Ca2+]i changes exhibiting several kinetic phases and threshold behaviour. Often Ca2+ oscillations were induced after a single InsP3 pulse. Autoregenerative Ca2+ transients could also be induced by injections of Ca2+ itself, demonstrating unequivocally the presence of a Ca2(+)-induced Ca2(+)-release mechanism in these cells.
InsP3- and Ca2(+)-induced Ca2+ release in single mouse oocytes.
PERES, ANTONIO
1990-01-01
Abstract
To better understand the mechanism of intracellular Ca2+ mobilization, mouse oocytes were micro-injected with 'caged'-inositol-1,4,5 triphosphate caged-InsP3) together with the Ca2+ indicator Fluo-3 to directly induce and monitor Ca2+ redistribution. Photo-released InsP3 elicits [Ca2+]i changes exhibiting several kinetic phases and threshold behaviour. Often Ca2+ oscillations were induced after a single InsP3 pulse. Autoregenerative Ca2+ transients could also be induced by injections of Ca2+ itself, demonstrating unequivocally the presence of a Ca2(+)-induced Ca2(+)-release mechanism in these cells.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.