We discuss a method for improving causal inferences called ‘‘Coarsened Exact Matching’’ (CEM), and the new ‘‘Monotonic Imbalance Bounding’’ (MIB) class of matching methods from which CEM is derived. We summarize what is known about CEM and MIB, derive and illustrate several new desirable statistical properties of CEM, and then propose a variety of useful extensions. We show that CEM possesses a wide range of statistical properties not available in most other matching methods but is at the same time exceptionally easy to comprehend and use. We focus on the connection between theoretical properties and practical applications. We also make available easy-to-use open source software for R, Stata, and SPSS that implement all our suggestions.
Causal inference without balance checking: Coarsened Exact Matching
PORRO, GIUSEPPE
2012-01-01
Abstract
We discuss a method for improving causal inferences called ‘‘Coarsened Exact Matching’’ (CEM), and the new ‘‘Monotonic Imbalance Bounding’’ (MIB) class of matching methods from which CEM is derived. We summarize what is known about CEM and MIB, derive and illustrate several new desirable statistical properties of CEM, and then propose a variety of useful extensions. We show that CEM possesses a wide range of statistical properties not available in most other matching methods but is at the same time exceptionally easy to comprehend and use. We focus on the connection between theoretical properties and practical applications. We also make available easy-to-use open source software for R, Stata, and SPSS that implement all our suggestions.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.