Nonstationary iterated Tikhonov is an iterative regularization method that requires a strategy for defining the Tikhonov regularization parameter at each iteration and an early termination of the iterative process. A classical choice for the regularization parameters is a decreasing geometric sequence which leads to a linear convergence rate. The early iterations compute quickly a good approximation of the true solution, but the main drawback of this choice is a rapid growth of the error for later iterations. This implies that a stopping criteria, e.g. the discrepancy principle, could fail in computing a good approximation. In this paper we show by a filter factor analysis that a nondecreasing sequence of regularization parameters can provide a rapid and stable convergence. Hence, a reliable stopping criteria is no longer necessary. A geometric nondecreasing sequence of the Tikhonov regularization parameters into a fixed interval is proposed and numerically validated for deblurring problems.
On nondecreasing sequences of regularization parameters for nonstationary iterated Tikhonov
DONATELLI, MARCO
2012-01-01
Abstract
Nonstationary iterated Tikhonov is an iterative regularization method that requires a strategy for defining the Tikhonov regularization parameter at each iteration and an early termination of the iterative process. A classical choice for the regularization parameters is a decreasing geometric sequence which leads to a linear convergence rate. The early iterations compute quickly a good approximation of the true solution, but the main drawback of this choice is a rapid growth of the error for later iterations. This implies that a stopping criteria, e.g. the discrepancy principle, could fail in computing a good approximation. In this paper we show by a filter factor analysis that a nondecreasing sequence of regularization parameters can provide a rapid and stable convergence. Hence, a reliable stopping criteria is no longer necessary. A geometric nondecreasing sequence of the Tikhonov regularization parameters into a fixed interval is proposed and numerically validated for deblurring problems.File | Dimensione | Formato | |
---|---|---|---|
10.1007_s11075-012-9593-7.pdf
non disponibili
Tipologia:
Documento in Post-print
Licenza:
DRM non definito
Dimensione
741.13 kB
Formato
Adobe PDF
|
741.13 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.