We present a simple kinematic model of a non-equilibrium steady state device, which can operate either as a heat engine or as a refrigerator. The model is composed of two or more scattering channels where the motion is fully described by deterministic classical dynamics, which connect a pair of stochastic (infinite) heat and particle baths at unequal temperatures. We discuss precise kinematic conditions under which our model may approach Carnot's optimal efficiency in different situations

Nanocoolers

CASATI, GIULIO
2011-01-01

Abstract

We present a simple kinematic model of a non-equilibrium steady state device, which can operate either as a heat engine or as a refrigerator. The model is composed of two or more scattering channels where the motion is fully described by deterministic classical dynamics, which connect a pair of stochastic (infinite) heat and particle baths at unequal temperatures. We discuss precise kinematic conditions under which our model may approach Carnot's optimal efficiency in different situations
2011
M., Hovart; T., Prosen; Casati, Giulio
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/1759570
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact