Fast and exothermic discontinuous emulsion polymerization processes are particularly difficult to optimize from both safety and productivity point of view because of the occurrence of side undesired reactions (e.g. chain transfer to monomer, backbiting, propagation of tertiary radicals, termination by disproportion, etc.) and the hazards of boiling phenomena and stable foam formation under atmospheric pressure. Moreover, the relevant number of loading, heating and cooling steps, required before starting the monomer addition (that is, the desired reaction), makes a strict product quality reproducibility very difficult to obtain. Under these operating conditions, it is necessary to employ a suitable combined theoretical and experimental procedure able to detect the optimum process dosing time at both the laboratory and the industrial scale. In this work, it is shown how to use the topological criterion theory together with proper adiabatic calorimeter and RC1 experimental data to safely optimize the synthesis of polyvinyl acetate through the radical emulsion polymerization of vinyl acetate by the means of an indirectly cooled isoperibolic semibatch reactor.

Emulsion polymerization of vinyl acetate: Safe optimization of a hazardous complex process

COPELLI, SABRINA;
2011-01-01

Abstract

Fast and exothermic discontinuous emulsion polymerization processes are particularly difficult to optimize from both safety and productivity point of view because of the occurrence of side undesired reactions (e.g. chain transfer to monomer, backbiting, propagation of tertiary radicals, termination by disproportion, etc.) and the hazards of boiling phenomena and stable foam formation under atmospheric pressure. Moreover, the relevant number of loading, heating and cooling steps, required before starting the monomer addition (that is, the desired reaction), makes a strict product quality reproducibility very difficult to obtain. Under these operating conditions, it is necessary to employ a suitable combined theoretical and experimental procedure able to detect the optimum process dosing time at both the laboratory and the industrial scale. In this work, it is shown how to use the topological criterion theory together with proper adiabatic calorimeter and RC1 experimental data to safely optimize the synthesis of polyvinyl acetate through the radical emulsion polymerization of vinyl acetate by the means of an indirectly cooled isoperibolic semibatch reactor.
2011
http://www.scopus.com/record/display.url?eid=2-s2.0-79959726419&origin=resultslist&sort=plf-f&src=s&sid=57037EEB84FBE2C3CC3AF798988493ED.53bsOu7mi7A1NSY7fPJf1g%3a100&sot=aut&sdt=a&sl=37&s=AU-ID%28%22Copelli%2c+Sabrina%22+26221013100%29&relpos=15&relpos=15&citeCnt=6&searchTerm=AU-ID%28%5C%26quot%3BCopelli%2C+Sabrina%5C%26quot%3B+26221013100%29
Copelli, Sabrina; Derudi, M.; Sempere, J.; Serra, E.; Lunghi, A.; Pasturenzi, C.; Rota, R.
File in questo prodotto:
File Dimensione Formato  
Art_13_TOPO_Emu.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: DRM non definito
Dimensione 924.53 kB
Formato Adobe PDF
924.53 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/1759584
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 25
  • ???jsp.display-item.citation.isi??? 22
social impact