Strongly exothermic solution homopolymerizations are a class of chain reactions particularly difficult to be optimized from both a safety and a productivity viewpoint. Particularly, lots of side undesired reactions (e.g., backbiting, propagation of tertiary radicals, chain transfer to monomer or solvent, etc.), which affect the selectivity with respect to the desired product, and relevant mass and heat transfer problems, due to the increasing system viscosity, take place during such syntheses. Under these unavoidable operating conditions, it is difficult to employ theoretical procedures that are able to safely optimize the analyzed process, because the development of a reliable mathematical model is often not affordable or too time-consuming. In this work, it is shown that the topological criterion theory and its related optimization procedure can be used to optimize experimentally (through a dedicated set of isoperibolic reaction calorimetry tests) a complex reacting system even if its reaction scheme and all information about the kinetics are not available.
Experimental design of topological curves to safely optimize highly exothermic complex reacting systems
COPELLI, SABRINA;
2011-01-01
Abstract
Strongly exothermic solution homopolymerizations are a class of chain reactions particularly difficult to be optimized from both a safety and a productivity viewpoint. Particularly, lots of side undesired reactions (e.g., backbiting, propagation of tertiary radicals, chain transfer to monomer or solvent, etc.), which affect the selectivity with respect to the desired product, and relevant mass and heat transfer problems, due to the increasing system viscosity, take place during such syntheses. Under these unavoidable operating conditions, it is difficult to employ theoretical procedures that are able to safely optimize the analyzed process, because the development of a reliable mathematical model is often not affordable or too time-consuming. In this work, it is shown that the topological criterion theory and its related optimization procedure can be used to optimize experimentally (through a dedicated set of isoperibolic reaction calorimetry tests) a complex reacting system even if its reaction scheme and all information about the kinetics are not available.File | Dimensione | Formato | |
---|---|---|---|
Art_12_TOPO_Exp.pdf
non disponibili
Tipologia:
Documento in Post-print
Licenza:
DRM non definito
Dimensione
2.49 MB
Formato
Adobe PDF
|
2.49 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.