To present preliminary clinical experience with Matrix-induced autologous chondrocyte implantation, a new tissue-engineering technique for treatment of deep cartilage defects, in which autologous chondrocytes are seeded on a tridimensional scaffold provided by a bilayer type I-III collagen membrane.From December 1999 to January 2001, 13 patients underwent implantation procedure for deep cartilage defects. Age of patients ranged from 18 to 49 years (mean age, 35 years). The mean defect size was 3.5 cm(2) (range, 2.0-4.5 cm(2)). Clinical and functional evaluation were performed using various score systems for the ankle and the knee, and magnetic resonance imaging was performed at 6 and 12 months postoperatively. Membrane structure and cellular population were investigated by light microscopy, scanning electron microscopy, and electrophoresis before implantation.The mean follow-up was 6.5 months (range, 2-15 months). No complications were observed in the postoperative period. The 6 patients with a minimum follow-up of 6 months showed an improvement in clinical and functional status after surgery. Magnetic resonance images showed the presence of hyaline-like cartilage at the site of implantation; there was evidence of chondroblasts and type II collagen inside the seeded membrane.Matrix-induced autologous chondrocyte implantation offers several advantages with respect to the traditional cultured cell procedure. These include technical simplicity, short operating time, minimal invasiveness, and easier access to difficult sites. It appears to be a reliable method for the repair of deep cartilage defects.

Autologous chondrocyte implantation using a bilayer collagen membrane: a preliminary report.

CHERUBINO, PAOLO;RONGA, MARIO
2003-01-01

Abstract

To present preliminary clinical experience with Matrix-induced autologous chondrocyte implantation, a new tissue-engineering technique for treatment of deep cartilage defects, in which autologous chondrocytes are seeded on a tridimensional scaffold provided by a bilayer type I-III collagen membrane.From December 1999 to January 2001, 13 patients underwent implantation procedure for deep cartilage defects. Age of patients ranged from 18 to 49 years (mean age, 35 years). The mean defect size was 3.5 cm(2) (range, 2.0-4.5 cm(2)). Clinical and functional evaluation were performed using various score systems for the ankle and the knee, and magnetic resonance imaging was performed at 6 and 12 months postoperatively. Membrane structure and cellular population were investigated by light microscopy, scanning electron microscopy, and electrophoresis before implantation.The mean follow-up was 6.5 months (range, 2-15 months). No complications were observed in the postoperative period. The 6 patients with a minimum follow-up of 6 months showed an improvement in clinical and functional status after surgery. Magnetic resonance images showed the presence of hyaline-like cartilage at the site of implantation; there was evidence of chondroblasts and type II collagen inside the seeded membrane.Matrix-induced autologous chondrocyte implantation offers several advantages with respect to the traditional cultured cell procedure. These include technical simplicity, short operating time, minimal invasiveness, and easier access to difficult sites. It appears to be a reliable method for the repair of deep cartilage defects.
2003
Adolescent, Adult, Cartilage; injuries/physiopathology/surgery, Chondrocytes; transplantation, Collagen Type I; therapeutic use, Collagen Type III; therapeutic use, Female, Follow-Up Studies, Humans, Male, Membranes, Middle Aged, Osteochondritis Dissecans; therapy, Recovery of Function; physiology, Regeneration; physiology
Cherubino, Paolo; F. A., Grassi; P., Bulgheroni; Ronga, Mario
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/1761718
Citazioni
  • ???jsp.display-item.citation.pmc??? 40
  • Scopus 201
  • ???jsp.display-item.citation.isi??? 6
social impact