Given a finite configuration of points A in ℝ k endowed with the Manhattan distance, we prove that the ratio of the sum of the distances from a centroid of A over the sum of the distances from the Steiner center of A is bounded by 1 + (k - 1) k; further, this bound can be attained. This fact extends to an arbitrary finite dimension k ≥ 2 a result proved by Fekete and Meijer for k ∈ {2, 3}.

An extension to R^k of a result by Fekete and Meijer

URSINO, PIETRO
2012-01-01

Abstract

Given a finite configuration of points A in ℝ k endowed with the Manhattan distance, we prove that the ratio of the sum of the distances from a centroid of A over the sum of the distances from the Steiner center of A is bounded by 1 + (k - 1) k; further, this bound can be attained. This fact extends to an arbitrary finite dimension k ≥ 2 a result proved by Fekete and Meijer for k ∈ {2, 3}.
2012
1-median problem; Centroid; Manhattan distance; Steiner center
Giarlotta, A.; Ursino, Pietro
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/1765695
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact